Browse > Article
http://dx.doi.org/10.33961/jecst.2020.00983

Hydrogen Evolution Ability of Selected Pure Metals and Galvanic Corrosion Behavior between the Metals and Magnesium  

Luo, Zhen (Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University)
Song, Kaili (Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University)
Li, Guijuan (Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University)
Yang, Lei (Key Lab. for Anisotropy and Texture of Materials, Education Ministry of China, School of Materials Science and Engineering, Northeastern University)
Publication Information
Journal of Electrochemical Science and Technology / v.11, no.4, 2020 , pp. 323-329 More about this Journal
Abstract
The cathodic hydrogen evolution ability of different pure metals and their long term galvanic corrosion behavior with pure Mg were investigated. The hydrogen evolution ability of pure Ti, Al, Sn and Zr is weak, while that of Fe, W, Cr, and Co is very strong. Initial polarization test could not completely reveal the cathodic behavior of the tested metals during long term corrosion. The cathodic hydrogen evolution ability may vary significantly in the long term galvanic tests for different metals, especially for Al whose cathodic current density reduced to 1/50 of the initial value. The anodic polarization shows that Al and Sn as alloying elements are supposed to provide relatively good passive effect for Mg alloy, while Ag can provide a slight passive effect and Zn has little passive effect.
Keywords
Magnesium; Hydrogen Evolution; Galvanic Corrosion; Pure Metals;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T.B. Abbott, Corros., 2015, 71(2), 120-127.   DOI
2 V. Bazhenov, A. Koltygin, A. Komissarov, A. Li, V. Bautin, R. Khasenova, A. Anishchenko, A. Seferyan, J. Komissarova and Y. Estrin, J. Magnesium Alloys, 2020, 8, 352-363.   DOI
3 F. Guo, L. Jiang, Y. Ma, L. Liu, Z. Zhang, M. Yang, D. Zhang and F. Pan, Scr. Mater., 2020, 179, 16-19.   DOI
4 J.J. Han, P. Wan, Y. Ge, X.M. Fan, L.L. Tan, J.J. Li and K. Yang, Mater. Sci. Eng., C, 2016, 58, 799-811.   DOI
5 K. Hong, H. Park, Y. Kim, M. Knapek, P. Minarik, K. Mathis, A. Yamamoto and H. Choe, J. Mech. Behav. Biomed. Mater., 2019, 98, 213-224.   DOI
6 S.S. Jamali, S. E. Moulton, D. E. Tallman, M. Forsyth, J. Weber and G.G. Wallace, Electrochim. Acta, 2015, 152, 294-301.   DOI
7 S. Nezamdoust, D. Seifzadeh and Z. Rajabalizadeh, J. Magnesium Alloys, 2019, 7(3), 419-432.   DOI
8 Y. Uematsu, K. Tokaji and M. Matsumoto, Mater. Sci. Eng., A, 2009, 517(1-2), 138-145.   DOI
9 X.D. Yan, P. Wan, L.L. Tan, M.C. Zhao, L. Qin and K. Yang, Mater. Sci. Eng., C, 2018, 93, 565-581.   DOI
10 S.H. Tamboli, V. Puri and R.K. Puri, Appl. Surf. Sci., 2010, 256(14), 4582-4585.   DOI
11 S.F. Zhang, G.H. Hu, R.F. Zhang, Z.X. Jia, L.J. Wang, Y.J. Wang, C.Y. Hu and X.M. He, Trans. Nonferrous Met. Soc. China, 2010, 20, s660-s664.   DOI
12 L.J. Liu and M. Schlesinger, Corros. Sci., 2009, 51(8), 1733-1737.   DOI
13 I.B. Singh, M. Singh and S. Das, J. Magnesium Alloys, 2015, 3(2), 142-148.   DOI
14 K. Xiao, C.F. Dong, D. Wei, J.S. Wu and X.G. Li, J. Wuhan University, Technology-Mater. Sci. Ed., 2016, 31(1), 204-210.   DOI
15 M. Esmaily, J.R. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas and L. Johansson, Prog. Mater Sci., 2017, 89, 92-193.   DOI
16 G.L. Song and A. Atrens, Adv. Eng. Mater., 2003, 5(12), 837-858.   DOI
17 M. Colombo, E. Gariboldi and A. Morri, Mater. Sci. Eng., A, 2018, 713, 151-160.   DOI
18 J.B. Go, J.H. Lee, H. Yu and S.H. Park, J. Alloys Compd., 2020, 82, 1534451.
19 C.H. Ye, T.F. Xi, Y.F. Zheng, S.Q. Wang and Y.D. Li, Trans. Nonferrous Met. Soc. China, 2013, 23(4), 996-1001.   DOI
20 X.Y. Wang, Y.F. Wang, C. Wang, S. Xu, J. Rong, Z.Z. Yang, J.G. Wang and H.Y. Wang, J. Mater. Sci. Technol., 2020, 49, 117-125.   DOI
21 T.W. Cain, C.F. Glover and J.R. Scully, Electrochim. Acta, 2019, 297, 564-575.   DOI
22 S.J. Kim, S.J. Lee, J.Y. Jeong and K.H. Kim, Trans. Nonferrous Met. Soc. China, 2012, 22, s881-s886.
23 D. Tie, F. Feyerabend, N. Hort, D. Hoeche, K.U. Kainer, R. Willumeit and W.D. Mueller, Mater. Corros., 2014, 65(6), 569-576.   DOI
24 X.B. Zhang, Z.X. Ba, Z.Z. Wang, X.C. He, C. Shen and Q. Wang, Mater. Lett., 2013, 100, 188-191.   DOI
25 H.M. Jia, X.H. Feng and Y.S. Yang, Corros. Sci., 2017, 120, 75-81.   DOI
26 I.Y. Mukhina, Met. Sci. Heat Treat., 2014, 56(5-6), 387-393.   DOI
27 C.D. Yim, S.K. Woo, J. Yang and B.S. You, Magnesium Technol., 2014, 331-334.
28 L. Yang, X.R. Zhou, M. Curioni, S. Pawar, H. Liu, Z.Y. Fan, G. Scamans and G. Thompson, J. Electrochem. Soc., 2015, 162(7) , C362.   DOI
29 L.G. Bland, L.C. Scully and J.R. Scully, Corros., 2017, 73(5), 526-543.   DOI
30 L. Yang, G.K. Liu, L.G. Ma, E.L. Zhang, X.R. Zhou and G. Thompson, Corros. Sci., 2018, 139, 421-429.   DOI
31 L. Yang, X.R. Zhou, S.M. Liang, R. Schmid-Fetzer, Z.Y. Fan, G. Scamans, J. Robson and G. Thompson, J. Alloys Compd., 2015, 619, 396-400.   DOI
32 Y.Q. He, C.Q. Peng, Y. Feng, R.C. Wang and J.F. Zhong, J. Alloys Compd., 2020, 834, 154344-154356.   DOI
33 N.C. Hosking, M.A. Strom, P.H. Shipway and C.D. Rudd, Corros. Sci., 2007, 49(9), 3669-3695.   DOI