• Title/Summary/Keyword: Hydrogen Potential

Search Result 928, Processing Time 0.041 seconds

On the Use of Standing Oblique Detonation Waves in a Shcramjet Combustor

  • Fusina, Giovanni;Sislian, Jean P.;Schwientek, Alexander O.;Parent, Bernard
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.671-686
    • /
    • 2004
  • The shock-induced combustion ramjet (shcramjet) is a hypersonic airbreathing propulsion concept which over-comes the drawbacks of the long, massive combustors present in the scramjet by using a standing oblique detonation wave (a coupled shock-combustion front) as a means of nearly instantaneous heat addition. A novel shcramjet combustor design that makes use of wedge-shaped flameholders to avoid detonation wave-wall interactions is proposed and analyzed with computational fluid dynamics (CFD) simulations in this study. The laminar, two-dimensional Navier-Stokes equations coupled with a non-equilibrium hydrogen-air combustion model based on chemical kinetics are used to represent the physical system. The equations are solved with the WARP (window-allocatable resolver for propulsion) CFD code (see: Parent, B. and Sislian, J. P., “The Use of Domain Decomposition in Accelerating the Convergence of Quasihyperbolic Systems”, J. of Comp. Physics, Vol. 179, No. 1,2002, pages 140-169). The solver was validated with experimental results found in the literature. A series of steady-state numerical simulations was conducted using WARP and it was deter-mined by means of thrust potential calculations that this combustor design is a viable one for shcramjet propulsion: assuming a shcramjet flight Mach number of twelve at an altitude of 36,000 m, the geometrical dimensions used for the combustor give rise to an operational range for combustor inlet Mach numbers between six and eight. Different shcramjet flight Mach numbers would require different combustor dimensions and hence a variable geometry system in or-der to be viable.

  • PDF

Biological Activities and Cell Proliferation effects of Red Ginseng Ethanol Extracts (홍삼 에탄올 추출물의 생리활성과 세포증식 효과)

  • Hwang, Sung-Yeoun;Ahn, Seong-Hun
    • Journal of Pharmacopuncture
    • /
    • v.14 no.3
    • /
    • pp.55-61
    • /
    • 2011
  • Objectives: Reactive Oxygen Species(ROS) are continuously produced at a high rate as a by-product of aerobic metabolism. Since tissue damage by free radical, ROS such as hydrogen peroxide($H_2O_2$), nitric oxide(NO) increases with age. Several lines of evidence provided that ROS appears to cause to develop aging-related various diseases such as cancer, arthritis, cardiovascular disease. In this study, we have conducted to investigate the pharmacological effects of red ginseng for the development possibility to pharmacopuncture drug sources or healthy aid foods. Methods: For our aims, it was investigated the biological activities of Red Ginseng ethanol extracts (RGEE) by measuring total polyphenol contents, total flavonoid contents, DPPH radical scavenging activity, ABTS radical scavenging activity and cell viability of MCF 10A and SK-MEL-2 in vitro with MTT assay method. Results: The total polyphenol contents of RGEE was 3.06${\pm}$0.11mg/g in 10mg/ml, the total flavonoid contents of RGEE was 1.35${\pm}$0.01mg/g in same concentration. The ABTS radical scavenging activity was about 80% and that of DPPH activity was 65% in 50mg/ml of RGEE. The cell viability of SKMEL-2, skin cancer cell line was decreased and that of MCF 10A, skin normal cell line was increased. Conclusions: We conclude that RGEE may be useful as potential functional foods or pharmacopuncture drug sources on the diseases induced by oxidant stress.

Four active monomers from Moutan Cortex exert inhibitory effects against oxidative stress by activating Nrf2/Keap1 signaling pathway

  • Zhang, Baoshun;Yu, Deqing;Luo, Nanxuan;Yang, Changqing;Zhu, Yurong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.5
    • /
    • pp.373-384
    • /
    • 2020
  • Paeonol, quercetin, β-sitosterol, and gallic acid extracted from Moutan Cortex had been reported to possess anti-oxidative, anti-inflammatory, and anti-tumor activities. This work aimed to illustrate the potential anti-oxidative mechanism of monomers in human liver hepatocellular carcinoma (HepG2) cells-induced by hydrogen peroxide (H2O2) and to evaluate whether the hepatoprotective effect of monomers was independence or synergy in mice stimulated by carbon tetrachloride (CCl4). Monomers protected against oxidative stress in HepG2 cells in a dose-response manner by inhibiting the generation of reactive oxygen species, increasing total antioxidant capacity, catalase and superoxide dismutase (SOD) activities, and activating the antioxidative pathway of nuclear factor E2-related factor 2/Kelch-like ECH-associated protein 1 (Nrf2/Keap1) signaling pathway. We found that the in vitro antioxidant capacities of paeonol and quercetin were better than those of β-sitosterol and gallic acid. Furthermore, paeonol apparently diminished the levels of alanine transaminase and aspartate aminotransferase, augmented the contents of glutathione and SOD, promoted the expressions of Nrf2 and heme oxygenase-1 proteins in mice stimulated by CCl4. In HepG2 cells, paeonol, quercetin, β-sitosterol, and gallic acid play a defensive role against H2O2-induced oxidative stress through activating Nrf2/Keap1 pathway, indicating that these monomers have anti-oxidative properties. Totally, paeonol and quercetin exerted anti-oxidative and hepatoprotective effects, which is independent rather than synergy.

Topic Model Analysis of Research Trend on Renewable Energy (신재생에너지 동향 파악을 위한 토픽 모형 분석)

  • Shin, KyuSik;Choi, HoeRyeon;Lee, HongChul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6411-6418
    • /
    • 2015
  • To respond the climate change and environmental pollution, the studies on renewable energy policies are increasing. The renewable energy is a new growth engine technology represented by the green industry and green technology. At present, the investments for the renewable energy supply and technology development projects of three main strategy sectors such as sunlight, wind power and hydrogen fuel cell are implemented in our country, while they are still in the early stage, accordingly reducing those uncertainty for the research direction and investment fields is the most urgent issue among others. Thus, this study applied text mining method and multinominal topic model among the big data analysis methods on our country's newspaper articles concerning the renewable energy over the last 10 years, and then analyzed the core issues and global research trend, forecasting the renewable energy fields with the growth potential. It is predicted that these results of the study based on information and communication technology will be actively applied on the renewable energy fields.

Protective Effects of Glycyrrhiza uralensis Radix Extract and Its Active Compounds on H2O2-induced Apoptosis of C6 Glial Cells (H2O2로 유도된 C6 신경교세포의 세포사멸에 대한 감초 추출물과 감초 활성물질의 보호효과)

  • Park, Chan Hum;Kim, Ji Hyun;Choi, Seung Hak;Shin, Yu Su;Lee, Sang Won;Cho, Eun Ju
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.5
    • /
    • pp.315-321
    • /
    • 2017
  • Background: Glycyrrhiza uralensis Radix (GR) is a crude drugs used in Asian countries that has been reported to prevent the progression of neurodegenerative diseases such as Alzheimer's disease. The present study examined whether GR and its active compounds, glycyrrhizic acid (GA) and isoliquiritigenin (IL), exerted protective effects on $H_2O_2$-induced oxidative damage in C6 glial cells. Methods and Results: We exposed C6 glial cells to hydrogen peroxide ($H_2O_2$) for 24 h and investigated the cellular response to GR and its active compounds by evaluating cell viability, reactivie oxygen species (ROS) production, and apoptosis-related protein expression. GR successfully mitigated the reduced cell viability and ROS production induced by $H_2O_2$ in C6 glial cells, IL and GA significantly increased the cell viability and decreased ROS production. In addition, IL and GA down-regulated apoptotic Baxdependent caspase-3 activation, but each compound exerted different mechanisms, i.e., IL dose-dependently decreased ROS production and, GA up-regulated anti-apoptotic Bcl-2 expression. Conclusions: These results demonstrated that GR and its active components, IL and GA, exhibit potential for use as natural neurodegenerative agents for the modulation of apoptosis in C6 glial cells.

Decomposition of Acetylsalicylic Acid by Gamma Ray (감마선 조사에 의한 Acetylsalicylic Acid의 분해)

  • Ahn, Young Deok;Lee, Kyoung-hwon;Lee, O Mi;Kim, Tae-Hun;Jung, In ha;Yu, SeungHo;Lee, Myun-Joo
    • Journal of Radiation Industry
    • /
    • v.5 no.3
    • /
    • pp.253-258
    • /
    • 2011
  • Acetylsalicylic acid (ASA) has been issued recently in contaminated water environments because of potential impacts on ecosystem and public health. This study was aimed at investigating the possibility of ASA degradation using gamma ray irradiation. In addition, the use of sodium persulfate, hydrogen peroxide, ferrous sulfate were tested in order to examine a synergistic effect with gamma ray. The absorbed dose was ranged from 0.2 to 10 kGy and the concentration of oxidants were from 0.1 to 10 mM in this study. The concentration of ASA was gradually decreased corresponding to the increase of the absorbed dose. When soudium persulfate was simultaneously applied, most of the parent compound was completely degraded even at a low dose of 0.8 kGy. The removal efficiency of total organic carbon was 90% even at the highest dose of 10 kGy without sodium persulfate. However, the efficiency was dramatically enhanced up to 98% at the same dose by adding 10 mM of oxidants. It was suggested that hydroxyl radical ($OH{\cdot}$) and sulfate radical ($SO{_4}^-{\cdot}$) were formed in the system and made roles in degrading ASA at the same time.

Impact of Ecklonia stolonifera extract on in vitro ruminal fermentation characteristics, methanogenesis, and microbial populations

  • Lee, Shin Ja;Jeong, Jin Suk;Shin, Nyeon Hak;Lee, Su Kyoung;Kim, Hyun Sang;Eom, Jun Sik;Lee, Sung Sill
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1864-1872
    • /
    • 2019
  • Objective: This study was conducted to evaluate the effects of Ecklonia stolonifera (E. stolonifera) extract addition on in vitro ruminal fermentation characteristics, methanogenesis and microbial populations. Methods: One cannulated Holstein cow ($450{\pm}30kg$) consuming timothy hay and a commercial concentrate (60:40, w/w) twice daily (09:00 and 17:00) at 2% of body weight with free access to water and mineral block were used as rumen fluid donors. In vitro fermentation experiment, with timothy hay as substrate, was conducted for up to 72 h, with E. stolonifera extract added to achieve final concentration 1%, 3%, and 5% on timothy hay basis. Results: Administration of E. stolonifera extract to a ruminant fluid-artificial saliva mixture in vitro increased the total gas production. Unexpectedly, E. stolonifera extracts appeared to increase both methane emissions and hydrogen production, which is contrasts with previous observations with brown algae extracts used under in vitro fermentation conditions. Interestingly, real-time polymerase chain reaction indicated that as compared with the untreated control the ciliate-associated methanogen and Fibrobacter succinogenes populations decreased, whereas the Ruminococcus flavefaciens population increased as a result of E. stolonifera extract supplementation. Conclusion: E. stolonifera showed no detrimental effect on rumen fermentation characteristics and microbial population. Through these results E. stolonifera has potential as a viable feed supplement to ruminants.

A study for Solubilization and Bioavailability of Sewage Sludge Using the Complex Pre-treatment (복합 전처리를 통한 하수슬러지의 가용화 및 생물학적 유용성에 관한 연구)

  • Kang, Jung-Hyun;Lee, Hee-Soo;Lee, Tae-Jin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.19 no.3
    • /
    • pp.35-43
    • /
    • 2011
  • In this study, anaerobic biological decomposition were attempted after solubilization treatment of sewage sludge with the complex pre-treatment (acid/base treatment with ultrasonic radiation). Solubilization ratios were compared for ultrasonic treatment at acid or base condition. Solubilization effect of the complex pre-treatment was more effective at higher pH. Biological decomposition of complex pre-treated sludge was faster than non treated (raw) sludge, showing 10 times higher total gas production. Biological digestion of the sludge shows more biogas production. B/A ratio. which indicates hydrogen production potential, was 50% higher with complex pre-treated sludge than raw sludge but lactic acid or propionic acid were also detected during anaerobic decomposition process.

The Effects of Baekho-tang Extracts on Regulating Th2 Differentiation through Improving Skin Fat Barrier Damage (백호탕 추출물의 지방장벽 손상 개선을 통한 상피 내 Th2 분화 조절 효과)

  • Ahn, Sang Hyun;Kim, Ki Bong;Jeong, Aram
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.35 no.4
    • /
    • pp.156-166
    • /
    • 2021
  • Objectives The purpose of this study is to confirm the regulate effect of T helper (Th) 2 differentiation that Baekho-tang extract may produce to improves skin lipid barrier damages. Methods Four-weeks-old NC/Nga mice were divided into four groups: control group (Ctrl, n=10), lipid barrier eliminated group (LBE, n=10), Dexamethasone treatment after lipid barrier elimination group (DxT, n=10), and Baekho-tang extract treatment group after lipid barrier elimination group (BHTT, n=10). Baeko-tang extract was administered for 3 days after removal of the skin fat barrier in BHTT group. Then, we identified changes in external symptoms of the skin, factors affecting skin barrier such as potential of hydrogen (pH), filaggrin (FLG), transepidermal water loss (TEWL) and Th2 differentiation factors like Interleukin (IL)-4, Kallikrein Related Peptidase 7 (KLK7) and protease activated receptor 2 (PAR-2) through our immunohistochemistry. Results After lipid barrier elimination, the reduction of morphological skin inflammations was less in BHTT group than in LBE group and DxT group. Also, pH and TEWL were significantly decreased with BHTT group. However, FLG was significantly increased in BHTT group compared to LBE, DxT, and Ctrl group. All kinds of Th2 differentiation factors (IL-4, KLK7 and PAR-2) were also decreased in BHTT compared to the LBE and DxT. Conclusions As a result of this study, BHT administration decreased pH, TEWL, and increased FLG, thus participating in recovering damaged skin barrier. Since Th2 differentiation factors were decreased as well, BHT's regulatory effect in sequential immune reactions may be a possible explanation of how it enhances recovery of the damaged lipid barrier.

Enhancement of Mechanical Properties of 2K Polyurethane Adhesives via Forming Ionic Bonds (이온결합 형성에 따른 이액형 폴리우레탄 접착제의 기계적 특성 향상)

  • Kwon, Haeun;Kim, Doo Hun;Kim, Gu Ni
    • Journal of Adhesion and Interface
    • /
    • v.22 no.4
    • /
    • pp.128-135
    • /
    • 2021
  • In this study, the acid polyols containing acid groups were synthesized, the novel polyurethane adhesive was developed by introducing the acid polyol by content. The acid polyols were introduced, the mechanical properties showed the maximum value when the acid content was 0.1 to 0.3 wt%, and it was confirmed that the mechanical properties and adhesive strength decreased at the content higher than 0.5 wt%. As the acid group, carboxylic acid and sulfuric acid were introduced to compare properties, and carboxylic acid showed stronger hydrogen bonding potential than sulfuric acid and improved mechanical properties. In addition, the correlation between particle size and mechanical properties was confirmed by introducing ZnO and CaCO3. When ZnO and CaCO3 were introduced, an ionic bond was formed with an acid group, and it was confirmed that mechanical properties were increased.