Browse > Article
http://dx.doi.org/10.17702/jai.2021.22.4.128

Enhancement of Mechanical Properties of 2K Polyurethane Adhesives via Forming Ionic Bonds  

Kwon, Haeun (Korea Institute of Footwear & Leather Technology)
Kim, Doo Hun (Korea Institute of Footwear & Leather Technology)
Kim, Gu Ni (Korea Institute of Footwear & Leather Technology)
Publication Information
Journal of Adhesion and Interface / v.22, no.4, 2021 , pp. 128-135 More about this Journal
Abstract
In this study, the acid polyols containing acid groups were synthesized, the novel polyurethane adhesive was developed by introducing the acid polyol by content. The acid polyols were introduced, the mechanical properties showed the maximum value when the acid content was 0.1 to 0.3 wt%, and it was confirmed that the mechanical properties and adhesive strength decreased at the content higher than 0.5 wt%. As the acid group, carboxylic acid and sulfuric acid were introduced to compare properties, and carboxylic acid showed stronger hydrogen bonding potential than sulfuric acid and improved mechanical properties. In addition, the correlation between particle size and mechanical properties was confirmed by introducing ZnO and CaCO3. When ZnO and CaCO3 were introduced, an ionic bond was formed with an acid group, and it was confirmed that mechanical properties were increased.
Keywords
Polyurethane adhesive; Acid polyol; Zinc oxide; Calcium carbonate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 R. P. Sijibesma and E. W. Meiger, Chem. Commun., 5 (2003).
2 D. Y. Mok. H. D. Shin, D. H. Kim, G. N. Kim, H. S. Moon and I. S. Kim, Adhesion and Interface, 14, 2013
3 H. Ebadi-Dehaghani, M.Reiszadeh, A. Chavoshi, M. Nazempour, and M. H. Vakili, Macromolecular Science, 37 (2013).
4 D. Y. Mok, H. D. Shin, D. H. Kim, G. N. Kim, and I. S. Kim, Adhesion and Interface, 48, 256 (2013).
5 K. Y. Chen, J. F. Kuo, C. Y. Chen, Biomaterials, 21, 161 (2000).   DOI
6 R. Bonart, Polymer, 20, 1389 (1979).   DOI
7 G. Oertel, Polyurethane Handbook, Carl Hanser Verlag, Munich (1985).
8 C. Hepburn, Polyurethane Elastomer, Elsevier, New York (1991).
9 K. C. Frrish and S. L. Reegen, Advances in Urethane Science and Technology, 1, Technomic USA (1978).
10 M. J. Han, K. B. Choi, S. H. Kim, and S. H Lee, Polymer (Korea), 7 (1983).
11 G. Woods, The ICI Polyurethane Book, ICI Polyurethanes (1987).
12 M. J. Jeong, J. M. Cheon, J. H. Chun, D. Y. Mok, and H. M. Lee, J. Adhesion and Interface, 10, 4 (2009).
13 H.R. Fischer, L.H. Gielgens, and T.P.M. Koster, Acta. Polym., 50, 122 (1999).   DOI
14 K.A. Carrado and L.Xu, Chem. Mater., 10, 1440 (1998).   DOI
15 S. H. Son, I. H. Kim, H. J. Lee and J. H. Kim, Polymer(korea), 21, 375 (1997).
16 D. G. Hundiwale, U. R. Kapadi and M. V. Pandya, J. Appl. Polym. Sci., 55, 1329 (1995).   DOI
17 M. Alexander and P. Dubois, Mater Sci Eng Rev, 28, 1 (2000).   DOI
18 PP. Soo, B. Y. Huang, Y. M. Chiang, D. R. Sadoway and A. M. Mayers, J. Electrochem. Soc., 146, 32 (1999).   DOI
19 A. C. Balazs, Curr. Opin. Colloid Interface Sci., 4, 443 (2000).   DOI
20 E. P. Giannelis, Appl Organomet Chem, 12, 675 (1998).   DOI
21 Y. Kojima, A. Usuki, M. Kawasumi, O.Okada, Y. Fukushima and T. Kurachi, J Mater. Res., 8, 1185 (1993).   DOI