DOI QR코드

DOI QR Code

A study for Solubilization and Bioavailability of Sewage Sludge Using the Complex Pre-treatment

복합 전처리를 통한 하수슬러지의 가용화 및 생물학적 유용성에 관한 연구

  • Kang, Jung-Hyun (Department of Environmental Engineering, Seoul National University of Science & Technology) ;
  • Lee, Hee-Soo (Department of Environmental Engineering, Seoul National University of Science & Technology) ;
  • Lee, Tae-Jin (Department of Environmental Engineering, Seoul National University of Science & Technology)
  • 강정현 (서울과학기술대학교 환경공학과) ;
  • 이희수 (서울과학기술대학교 환경공학과) ;
  • 이태진 (서울과학기술대학교 환경공학과)
  • Received : 2011.07.28
  • Accepted : 2011.09.24
  • Published : 2011.09.30

Abstract

In this study, anaerobic biological decomposition were attempted after solubilization treatment of sewage sludge with the complex pre-treatment (acid/base treatment with ultrasonic radiation). Solubilization ratios were compared for ultrasonic treatment at acid or base condition. Solubilization effect of the complex pre-treatment was more effective at higher pH. Biological decomposition of complex pre-treated sludge was faster than non treated (raw) sludge, showing 10 times higher total gas production. Biological digestion of the sludge shows more biogas production. B/A ratio. which indicates hydrogen production potential, was 50% higher with complex pre-treated sludge than raw sludge but lactic acid or propionic acid were also detected during anaerobic decomposition process.

본 연구에서는 하수슬러지를 전처리 과정을 통해 가용화한 후 혐기성 생물학적 분해를 실시하였다. 산 또는 알칼리 조건과 초음파처리를 복합적으로 적용하여 전처리 후 슬러지의 가용화율을 비교하였으며 알칼리 조건에서 초음파처리를 병행하였을 때 최대 가용화율을 얻을 수 있었다. 가용화된 슬러지의 생물학적 유용성은 복합전처리를 실시한 경우 빠른 생물학적 분해와 더불어 총 가스 발생량은 10배 이상 증가하였으며 가용화된 슬러지에서 바이오가스 생산 가능성을 확인 하였다. 전처리를 실시한 슬러지를 이용하여 생물학적 분해를 실시하였을 때 약 50%정도 높은 수소생성율의 지표가 되는 B/A비를 확인할 수 있었으나 수소생성에 저해가 되는 lactic acid와 propionic acid가 검출되는 것으로 보아 후속연구가 필요할 것으로 판단되었다.

Keywords

References

  1. 유기영, "서울특별시 하수슬러지 처리현황", 유기성자원학회, 11(1), pp. 25-29 (2003).
  2. 환경부. 2004 하수도통계 (2005).
  3. Li, Y. and Noike, T., "Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment", Wat, Sci. Technol., 26, pp. 857-866 (1992).
  4. Masonn, T., Practical Sonochemistry: User's Guide to Application in Chemistry and Chemical Engineering, Ellis Horword Ltd., (1991).
  5. Young, F. R., Cavitation, McGraw-Hill, pp. 40-76 (1989).
  6. Neeyens, E., Baeyens, J., Dewil, R, and Deheyder, B., "Advanced sludge treatment affects extracellular polymeric substance to improve activated sludge dewatering", J. Hazard, Mater. 106B, pp. 83-92 (2004).
  7. Tiehm. A., Nickel, K., Zellhorn, M. and Neis, U., "Ultrasonic waste activated sludge disintegration for improving anaerobic stabilization", Wat. Res., 35(8), pp. 2003-2009 (2001). https://doi.org/10.1016/S0043-1354(00)00468-1
  8. Gronroos, A., Kyllönen, H., Korpijarvi, K., Pirkonen, P., Paavola, T., Jokela, J. and Rintala, J., "Ultrasound assisted method to increase soluble chemical oxygen demand (SCOD) of sewage sludge for digestion," Ultrasonics Sonochemistry, 12, pp. 115-120 (2005). https://doi.org/10.1016/j.ultsonch.2004.05.012
  9. Logan, B. E., OH, S. E., Kim, I. S. and Ginkel, S. V., "Biological hydrogen production measured in batch anaerobic respirometers," Environ. Sci, Technol., 36, pp. 2530-2535 (2002). https://doi.org/10.1021/es015783i
  10. Fang, H. H. P. and Liu, H., "Effect of pH on hydrogen production from glucose by a mixed culture," Bioresour. Technol., 82, pp. 87-93 (2002). https://doi.org/10.1016/S0960-8524(01)00110-9
  11. Chen, C.-C. and Lin, C.-Y., "Using sucrose as a substrate in an anaerobic hydrogen-producing reactor," Adv. Environ. Res., 7, pp. 695-.699 (2003). https://doi.org/10.1016/S1093-0191(02)00035-7
  12. Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. and Smith, F., "Colorimetric method for determination of sugars and related substances," Anal. Chem., 28(3), pp. 350-.356 (1956). https://doi.org/10.1021/ac60111a017
  13. 김동진, 김혜영, "전처리 방법에 따른 슬러지 가용화가 혐기소화에서 메탄 생산과 슬러지감량에 미치는 영향", 대한환경공학회, 48(1), pp. 103-109 (2010).
  14. Samir Kumar Khanal, Wen-Hsing Chen, Ling Li, Shihwn Sung, "Biological hydrogen production: effects of pH and intermediate products," Int. J. Hydrogen Energy, 29, pp. 1123-1131 (2004).
  15. Ginkel, S. V. and Sung, S. H., "Biohydrogen production as a function of pH and substrate concentration," Environ. Sci, Technol., 35, pp. 4726-4730 (2001). https://doi.org/10.1021/es001979r
  16. Bougrier, C., Albasi, C., Delgenes, J. P. and Carrere, H. "Effect of ultrasonic, thermal and ozone pre-treatment on waste activated sludge solubilization and anaerobic digestion", Chem. Eng. Process, 45, pp. 711-718. (2006). https://doi.org/10.1016/j.cep.2006.02.005
  17. 이채영, 박승용. "하수슬러지의 초음파 전처리를 통한 가용화 및 혐기성 생분해도 향상", 유기성자원학회, 16(3), pp. 83-90 (2008).
  18. Muller, J., Lehne, G., Schwedes, J., Battenberg, S., Näveke, R., Kopp, J., Dichtl, N., Scheminski, A., Krull, R. and Hempel, D. C. "Disintegration of sewage sludges and influence on anaerobic digestion." Wat. Sci. Tech., 38(8-9), pp. 425-433 (1998). https://doi.org/10.1016/S0273-1223(98)00720-3
  19. Leclere, M., Bernalier, A., Donadille, G. and Lelait M., "$H_{2}/CO_{2}$ metabolism in acetogenic bacteria isolated from the human colon," Anaerobe, 3, pp. 307-315 (1997). https://doi.org/10.1006/anae.1997.0117
  20. Morvan, B., Rieu-Lesme, F., Fonty, G. and Gouet, P., "In vitro interactions between rumen $H_{2}$-utilizing acetogenic and sulfate-reducing bacteria," Anaerobe, 2, pp. 175-180 (1996). https://doi.org/10.1006/anae.1996.0023
  21. 이승무, 박주량, 안준수, "유기성 폐기물로부터 혐기성 발효에 의한 알코올 생성에 관한 연구(I)", 한국폐기물자원순환학회, 3(2), pp. 49-64 (1986).