Browse > Article
http://dx.doi.org/10.5713/ajas.19.0092

Impact of Ecklonia stolonifera extract on in vitro ruminal fermentation characteristics, methanogenesis, and microbial populations  

Lee, Shin Ja (Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University)
Jeong, Jin Suk (Division of Applied Life Science (BK21Plus) and Institute of Agriculture and Life Science (IALS), Gyeongsang National University)
Shin, Nyeon Hak (Livestock Experiment Station, Gyeongsangnamdo Livestock Promotion Research Institute)
Lee, Su Kyoung (Institute of Agriculture and Life Science, Gyeongsang National University)
Kim, Hyun Sang (Division of Applied Life Science (BK21Plus), Gyeongsang National University)
Eom, Jun Sik (Division of Applied Life Science (BK21Plus), Gyeongsang National University)
Lee, Sung Sill (Institute of Agriculture and Life Science and University-Centered Labs, Gyeongsang National University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.32, no.12, 2019 , pp. 1864-1872 More about this Journal
Abstract
Objective: This study was conducted to evaluate the effects of Ecklonia stolonifera (E. stolonifera) extract addition on in vitro ruminal fermentation characteristics, methanogenesis and microbial populations. Methods: One cannulated Holstein cow ($450{\pm}30kg$) consuming timothy hay and a commercial concentrate (60:40, w/w) twice daily (09:00 and 17:00) at 2% of body weight with free access to water and mineral block were used as rumen fluid donors. In vitro fermentation experiment, with timothy hay as substrate, was conducted for up to 72 h, with E. stolonifera extract added to achieve final concentration 1%, 3%, and 5% on timothy hay basis. Results: Administration of E. stolonifera extract to a ruminant fluid-artificial saliva mixture in vitro increased the total gas production. Unexpectedly, E. stolonifera extracts appeared to increase both methane emissions and hydrogen production, which is contrasts with previous observations with brown algae extracts used under in vitro fermentation conditions. Interestingly, real-time polymerase chain reaction indicated that as compared with the untreated control the ciliate-associated methanogen and Fibrobacter succinogenes populations decreased, whereas the Ruminococcus flavefaciens population increased as a result of E. stolonifera extract supplementation. Conclusion: E. stolonifera showed no detrimental effect on rumen fermentation characteristics and microbial population. Through these results E. stolonifera has potential as a viable feed supplement to ruminants.
Keywords
Ecklonia stolonifera Extract; In vitro Fermentation; Methane Emission; Microbial Population;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Winter FC, Estes JA. Experimental evidence for the effects of polyphenolic compounds from Dictyoneurum californicum Ruprecht (Phaeophyta: Laminariales) on feeding rate and growth in the red abalone Haliotus rufescens Swainson. J Exp Mar Biol Ecol 1992;155:263-77. https://doi.org/10.1016/0022-0981(92)90067-K   DOI
2 Lee SJ, Shin NH, Jeong JS, Kim ET, Lee SK, Lee SS. Effect of Rhodophyta extracts on in vitro ruminal fermentation characteristics, methanogenesis and microbial populations. Asian-Australas J Anim Sci 2018;31:54-62. https://doi.org/10.5713/ajas.17.0620   DOI
3 Lee SJ, Shin NH, Jeong JS, et al. Effects of Gelidium amansii extracts on in vitro ruminal fermentation characteristics, methanogenesis, and microbial populations. Asian-Australas J Anim Sci 2018;31:71-9. https://doi.org/10.5713/ajas.17.0619   DOI
4 SAS Institute Inc. SAS/STAT user's guide: Version 9.2 edn. Cary, NC, USA: SAS Institute Inc.; 2002.
5 Hoover WH. Chemical factors involved in ruminal fiber digestion. J Dairy Sci 1986;69:2755-66. https://doi.org/10.3168/jds.S0022-0302(86)80724-X   DOI
6 Pellikaan WF, Hendriks WH, Uwimana G, Bongers LJGM, Becker PM, Cone JW. A novel method to determine simultaneously methane production during in vitro gas production using fully automated equipment. Anim Feed Sci Technol 2011;168:196-205. https://doi.org/10.1016/j.anifeedsci.2011.04.096   DOI
7 Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976;72:248-54. https://doi.org/10.1016/0003-2697(76)90527-3   DOI
8 Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Biochem 1959;31:426-8. https://doi.org/10.1021/ac60147a030   DOI
9 Denis C, Morancais M, Li M, et al. Study of the chemical composition of edible red macroalgae Grateloupia turuturu from Brittany (France). Food Chem 2010;119:913-7. https://doi.org/10.1016/j.foodchem.2009.07.047   DOI
10 Dubois B, Tomkins NW, Kinley RD, et al. Effect of tropical algae as additives on rumen in vitro gas production and fermentation characteristics. Am J Plant Sci 2013;4:34-43. https://doi.org/10.4236/ajps.2013.412A2005   DOI
11 Min BR, Barry TN, Attwood GT, Mc-Nabb WC. The Effect of condensed tannins on the nutrition and health of ruminants fed fresh temperate forages: a review. Anim Feed Sci Technol 2003;106:3-19. https://doi.org/10.1016/S0377-8401(03)00041-5   DOI
12 Machado L, Magnusson M, Paul NA, de Nys R, Tomkins N. Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS One 2014;9:e85289. https://doi.org/10.1371/journal.pone.0085289   DOI
13 Gupta S, Abu-Ghannam N. Bioactive potential and possible health effects of edible brown seaweeds. Trends Food Sci Technol 2011;22:315-26. https://doi.org/10.1016/j.tifs.2011.03.011   DOI
14 Mitsumori M, Sun W. Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian-Australas J Anim Sci 2008;21:144-54. https://doi.org/10.5713/ajas.2008.r01   DOI
15 Finlay BJ, Esteban G, Clarke KJ, et al. Some rumen ciliates have endosymbiotic methanogens. FEMS Microbiol Lett 1994;117:157-61.   DOI
16 Thauer RK, Kaster AK, Seedorf H, Buckel W, Hedderich R. Methanogenic archaea: ecologically relevant differences in energy conservation. Nat Rev Microbiol 2008;6:579-91. https://doi.org/10.1038/nrmicro1931   DOI
17 Hungate RE. The rumen and it's microbes. NY, USA: Academic Press; 1966. pp. 92-446.
18 Chaucheyras-Durand F, Masseglia S, Fonty G, Forano E. Influence of the composition of the cellulolytic flora on the development of hydrogenotrophic microorganisms, hydrogen utilization, and methane production in the rumens of gnotobiotically reared lambs. Appl Environ Microbiol 2010;76:7931-7. https://doi.org/10.1128/AEM.01784-10   DOI
19 Ntaikou I, Gavala HN, Kornaros M, Lyberatos G. Hydrogen production from sugars and sweet sorghum biomass using Ruminococcus albus. Int J Hydrogen Energy 2008;33:1153-63. https://doi.org/10.1016/j.ijhydene.2007.10.053   DOI
20 Latham MJ, Wolin MJ. Fermentation of cellulose by Ruminococcus flavefaciens in the presence and absence of Methanobacterium ruminantium. Appl Environ Microbiol 1977;34:297-301.   DOI
21 Koike S, Kobayashi Y. Development and use of competitive PCR assays for the rumen cellulolytic bacteria: Fibrobacter succinogenes, Ruminococcus albus and Ruminococcus flavefaciens. FEMS Microbiol Lett 2001;204:361-6. https://doi.org/10.1111/j.1574-6968.2001.tb10911.x   DOI
22 Denman SE, McSweeney CS. Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol 2006;58:572-82. https://doi.org/10.1111/j.1574-6941.2006.00190.x   DOI
23 Luton PE, Wayne JM, Sharp RJ, Riley PW. The mcrA gene as an alternative to 16S rRNA in the phylogenetic analysis of methanogen populations in landfill. Microbiology 2002;148:3521-30. https://doi.org/10.1099/00221287-148-11-3521   DOI
24 Tajima K, Nagamine T, Matsui H, Nakamura M, Aminov RI. Phylogenetic analysis of archaeal 16S rRNA libraries from the rumen suggests the existence of a novel group of archaea not associated with known methanogens. FEMS Microbiol Lett 2001;200:67-72. https://doi.org/10.1111/j.1574-6968.2001.tb10694.x   DOI
25 Denman SE, Tomkins NW, McSweeney CS. Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol 2007;62:313-22. https://doi.org/10.1111/j.1574-6941.2007.00394.x   DOI
26 Haugan JA, Liaaenjensen S. Algal Carotenoids 54. Carotenoids of brown algae (Phaeophyceae). Biochem Syst Ecol 1994;22:31-41. https://doi.org/10.1016/0305-1978(94)90112-0   DOI
27 Mehrez AZ, Orskov ER, Mcdonald I. Rates of rumen fermentation in relation to ammonia concentration. Br J Nutr 1977;38:437-43. https://doi.org/10.1079/BJN19770108   DOI
28 Jung HA, Jung HJ, Jeong HY, Kwon HJ, Ali MY, Choi JS. Phlorotannins isolated from the edible brown alga Ecklonia stolonifera exert anti-adipogenic activity on 3T3-L1 adipocytes by downregulating C/EBP${\alpha}$ and PPAR${\gamma}$. Fitoterapia 2014;92:260-9. https://doi.org/10.1016/j.fitote.2013.12.003   DOI
29 Chowdhury S, Huque K, Khatun M. Algae in animal production. Agracultural Science of Biodiversity and Sustainability Workshop, Tune Landboskole, Denmark; 1995. pp. 181-91.
30 Wang Y, Xu Z, Bach SJ, McAllister TA. Effects of phlorotannins from Ascophyllum nodosum (brown seaweed) on in vitro ruminal digestion of mixed forage or barley grain. Anim Feed Sci Technol 2008;145:375-95. https://doi.org/10.1016/j.anifeedsci.2007.03.013   DOI
31 Kuda T, Kunii T, Goto H, Suzuki T, Yano T. Varieties of antioxidant and antibacterial properties of Ecklonia stolonifera and Ecklonia kurome products harvested and processed in the Noto peninsula, Japan. Food Chem 2007;103:900-5. https://doi.org/10.1016/j.foodchem.2006.09.042   DOI
32 Kim S, Wijesekara I. Development and biological activities of marine-derived bioactive peptides: a review. J Funct Foods 2010;2:1-9. https://doi.org/10.1016/j.jff.2010.01.003   DOI