• Title/Summary/Keyword: Hydrogen Fuel Vehicle

Search Result 261, Processing Time 0.025 seconds

A Study on the Development of Safety Standard through the Risk Assessment for Fuel Cell System Applied to UAV (무인 비행체용 연료전지 시스템 위험요소 분석을 통한 안전기준 개발 연구)

  • TAEHEON KIM;JAEUK CHOI;INROK CHO;JUNGWOON LEE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.35 no.1
    • /
    • pp.56-65
    • /
    • 2024
  • Fuel cell powered unmanned aerial vehicles (UAV) are globally being developed for various application according to hydrogen roadmap. However, safety standards for hydrogen fuel cell for UAV have not been established. Therefore, in this study, we derive safety data based on risk assessment to develop safety standards for fuel cells for UAV. We use fault tree analysis method which is broadly used in hydrogen facilities as a risk assessment tool. We set hydrogen leaks and fires as top events and derived the basic events. Safety data for the basic events were derived by quoting overseas safety standards related to fuel cells. The safety data will be used for developing fuel cell inspection standard according to Act on Hydrogen Economy Promotion and Hydrogen Safety Management.

Analysis of Vehicle Demand by Fuel Types including Hydrogen Vehicles (수소차를 포함한 연료유형에 따른 자동차 수요 분석)

  • Yuhyeon Bak;Jee Young Kim;Yoon Lee
    • Environmental and Resource Economics Review
    • /
    • v.32 no.3
    • /
    • pp.167-190
    • /
    • 2023
  • This study analyzes the potential demand for automobiles based on fuel type using survey data in Korea. The dependent variable of the model is the future desired fuel type, including gasoline, diesel, hybrid, electricity, and hydrogen. The main explanatory variables are the respondent demographic characteristics, key reasons for choosing vehicle fuel type and environmental awareness extracted via principal component analysis (PCA). Using a multinomial logit (MNL) model, we find that respondents who consider fuel economy and infrastructure increase the demand for a hybrid car but decrease the demand for electric and hydrogen vehicles. The denial-types increase the demand for gasoline (petrol) and diesel (light oil), and decrease the demand for electric vehicles. The anxiety-types increase the demand of hybrid vehicles, and decrease the demand for electric vehicles. In contrast, in the case of pro-types, the demand for diesel (light oil) hydrogen vehicles decreased.

FUEL CELL ELECTRIC VEHICLES: RECENT ADVANCES AND CHALLENGES - REVIEW

  • Yang, W.C.
    • International Journal of Automotive Technology
    • /
    • v.1 no.1
    • /
    • pp.9-16
    • /
    • 2000
  • The growing concerns on environmental protection have been constantly demanding cleaner and more energy efficient vehicles without compromising any conveniences provided by the conventional vehicles. The recent significant advances in proton-exchange-membrane (PEM) fuel cell technology have shown the possibility of developing such vehicles powered by fuel cells. Several prototype fuel cell electric vehicles (FCEV) have been already developed by several major automotive manufactures, and all of the favorable features have been demonstrated in the public roads. FCEV is essentially a zero emission vehicle and allows to overcome the range limitation of the current battery electric vehicles. Being motivated by the laboratory and field demonstrations of the fuel cell technologies, variety of fuel cell alliances between fuel cell developers, automotive manufactures, petroleum companies and government agencies have been formed to expedite the realization of commercially viable FCEV. However, there still remain major issues that need to be overcome before it can be fully accepted by consumers. This paper describes the current fuel cell vehicle development status and the staggering challenges for the successful introduction of consumer acceptable FCEVS.

  • PDF

Advanced Technologies for the Commercialization of Hydrogen Fuel Cell Electric Vehicle (수소연료전지자동차의 최신기술)

  • Cho, Mann;Koo, Young-Duk
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.132-145
    • /
    • 2014
  • There is a general agreement that performance of hydrogen fuel cell vehicle(FCV) with respect to cold start, packaging, acceleration, refueling time and range has progressed to the point where vehicles that could be brought to market in 2015_2020 will satisfy customer expectations. However cost, durability and the lack of refueling infrastructure remain significant barriers. Cost have been dramatically reduced and durability has been enhanced over the past decade, yet are still about twice what appears to be needed sustainable market success. Advanced Technologies for the commercialization of hydrogen FCV were reviewed.

Demonstration Results of Fuel Cell Buses of Hyundai Motor Company (현대자동차 연료전지버스 실증 운영 결과)

  • Park, Jeongkyu;Lee, Seungyoon;Kim, Donghoon;Jin, Youngpin;Park, Jongjin;Kim, Saehoon
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.3
    • /
    • pp.264-270
    • /
    • 2014
  • Fuel cell technology is the most representative area of alternative energy field on vehicle industry according to the limitation of petroleum resources. In recent years, the technology of fuel cell vehicles has made rapid progress, Hyundai Motor Company (HMC) reached to mass production of the Tucson ix hydrogen fuel cell vehicles first in the world. In addition, HMC is accelerating the development of hydrogen fuel cell buses, which have a number of advantages for hydrogen infrastructure and mass transport personnel. In this study, we examined potential of the commercialization through the demonstration of hydrogen fuel cell buses. As a result, we identified that the mass-production possibility of FCB has high potential and HMC's technology will lead to fuel cell bus industry.

Exploring the Knowledge Structure of Fuel Cell Electric Vehicle in National R&D Projects for the Hydrogen Economy (수소 경제를 위한 국가R&D과제에서 연료전지전기차의 지식구조 탐색)

  • Choi, Jung Woo;Lee, Ji Yeon;Lee, Byeong-Hee;Kim, Tae-Hyun
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.6
    • /
    • pp.306-317
    • /
    • 2021
  • With a global shift from carbon economy towards hydrogen economy, leading countries such as the U.S., Europe, China, and Japan are focusing their research capabilities on hydrogen research and development(R&D) by announcing various hydrogen economy policies. South Korea also has been following this global trend by announcing hydrogen economy roadmap in January 2019 and legislating hydrogen economy related law. In this paper, we tried to figure out the national R&D trend of Fuel Cell Electric Vehicle(FCEV) and its knowledge structure by using recent 10-year project data of National Technology and Information Service(NTIS). We collected 1,479 FCEV-related projects and conducted text mining and network analysis. According to the analysis, FCEV-related R&D has been actively carried out over the entire process of hydrogen production, transport, storage, and utilization. Furthermore, the paper provides insights into the government's policy agenda building and market strategy on the hydrogen economy.

A Study on Analysis of Operation Data Monitoring Based on Demonstration of Hydrogen Refueling Station (수소 복합스테이션 실증기반 운영데이터 모니터링 분석 연구)

  • KIM, DONG-HWAN;PARK, SONG-HYUN;KU, YEON-JIN;KIM, PIL-JONG;HUH, YUN-SIL
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.6
    • /
    • pp.505-512
    • /
    • 2019
  • According to the "hydrogen economy roadmap" announced recently by the government, fuel cell electric vehicle diffusion and hydrogen refueling station construction are actively being carried out to prepare for the hydrogen economy era. The station will be expanded by introducing various charging station models such as hydrogen complex charging station, package, and mobile. Accordingly, the study on the safety demonstration of the charging station and related regulations should be compromised. The purpose of this study is to collect monitoring data during charging according to the distinct four seasons in Korea, and to use it as safety demonstration data by analyzing the charging status, charging rate and charging time during charging.

Development of the High Pressure Hydrogen Gas Cylinder(Type4) for Fuel Cell Vehicle;Design Qualification Tests (연료전지 차량용 고압기체수소 저장용기(Type4)개발;설계검증시험)

  • Yoo, Gye-Hyoung;Ju, Yong-Sun;Heo, Seok-Bong;Jeon, Sang-Jin;Kim, Jong-Lyul;Lee, Jong-Hee
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.193-196
    • /
    • 2007
  • We developed and tested the high pressure hydrogen gas cylinder(type4) for fuel cell vehicle. The working pressure is 350bar. We conducted material tests, production tests and design qualification tests on the developed cylinders according to modified NGV2-2000(hydrogen). The high pressure hydrogen gas cylinder met all the design qualification requirements of ANSI/CSA NGV2-2000 and acquired NGV2 certification from independent inspection agency.

  • PDF

Study on Safety Evaluation Process for Hydrogen Storage System of Hydrogen Bus (수소버스 수소저장용기의 측면충돌 안전성 평가방법 연구)

  • Kyungjin, Kim;Jaeho, Shin;Kyeonghee, Han;Hyeon Min, Han;Jeong Min, In;Siwoo, Kim
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.113-119
    • /
    • 2022
  • The structural safety of hydrogen buses is being evaluated for the successful introduction of hydrogen buses. The crash test methodology, for example, side impact test procedure is being discussed for hydrogen bus structure safety with a compressed hydrogen storage system located under the bus floor. Thus this study describes a new experiment method for side impact test with compressed hydrogen storage system independently based on finite element analysis instead of side impact test using full hydrogen bus. A side crash procedure of conceptual compressed hydrogen storage structure was investigated and impact simulations were performed. The finite element models of hydrogen bus, simplified structures, fuel tank system and side impact moving barrier were set up and simulation results reported model performance and result comparison of three different simplified models. Computational results and research discussion proposed the fundamental test framework for safety assessment of the compressed hydrogen storage system.

Power System Development of Unmanned Aerial Vehicle using Proton Exchange Membrane Fuel Cell (고분자 전해질 연료전지를 이용한 무인비행체 동력시스템 설계)

  • Jee, Yeong-Kwang;Sohn, Young-Jun;Park, Gu-Gon;Kim, Chang-Soo;Choi, Yu-Song;Cho, Sung-Baek
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.3
    • /
    • pp.250-255
    • /
    • 2012
  • In this paper, the development and performance analysis of a fuel cell-powered unmanned aerial vehicle is described. A fuel cell system featuring 1 kW proton exchange membrane fuel cell combined with a highly pressurized fuel supply system is proposed. For the higher fuel consumption efficiency and simplification of overall system, dead-end type operation is chosen and each individual system such as purge system, fuel supply system, cooling system is developed. Considering that fluctuation of exterior load makes it hard to stabilize fuel cell performance, the power management system is designed using a fuel cell and lithium-ion battery hybrid system. After integration of individual system, the performance of unmanned aerial vehicle is analyzed using data from flight and laboratory test. In the result, overall system was properly operated but for more duration of flight, research on weight lighting and improvement of fuel efficiency is needed to be progressed.