• Title/Summary/Keyword: Hydrogen CFD

Search Result 168, Processing Time 0.032 seconds

The Comparison of Proton Exchange Membrane Fuel Cell According to Flow Field Design (고체고분자전해질형 연료전지의 유로형상에 따른 성능의 비교)

  • LEE, KEON JOO
    • Journal of Digital Convergence
    • /
    • v.19 no.5
    • /
    • pp.279-284
    • /
    • 2021
  • In this study, the performance and distribution of fluid concentration, pressure, and current density of a proton exchange membrane fuel cell was investigated. In this paper, the two different types of flow field design were compared, singel channel and 5-channels. As a result, the 5-channels of flow field showed the better performance than that of single chanel. Especially, the single channel showed better performance in terms of mass transfer loss area.

Investigation on helix type labyrinth seal to minimize leakage flow of cryogen for rotating superconducting machines

  • Yubin Kim;Kihwan Kim;Seungcheol Ryu;Hojun Cha;Seokho Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.26 no.1
    • /
    • pp.25-30
    • /
    • 2024
  • High-temperature superconducting rotors offer advantages in terms of output-to-weight ratio and efficiency compared to conventional phase conduction motors or generators. The rotor can be cooled by conduction cooling, which attaches a cryocooler, and by refrigerant circulation, which uses circulating liquid or gas neon, helium and hydrogen. Recent work has focused on environmental issues and on high-temperature superconducting motors cooled with liquid hydrogen that can be combined with fuel cells. However, to ensure smooth supply and return of the cryogenic cooling fluid, a cryogenic rotational coupling between the rotating and stationary parts is necessary. Additionally, the development of a sealing structure to minimize fluid leakage applicable to the coupling is essential. This study describes the design and performance evaluation of a non-contact sealing method, specifically a labyrinth seal, which avoids power loss and heat load caused by friction in contact sealing structures. The seal design incorporates a spiral flow path to reduce leakage using centrifugal force, and computational fluid dynamics (CFD) simulations were conducted to analyze the flow path and rotational speed. A performance evaluation device was configured and employed to evaluate the designed seal. The results of this study will be used to develop a cryogenic rotational coupling with supply and return flow paths for cryogenic applications.

Analysis of Oscillation Behaviour in Unsteady Shock-Induced Combustion with Detailed Reaction Mechanisms

  • Kumar, P.Pradeep;Kim, Kui-Soon;Oh, Sejong;Choi, Jeong-Yeol
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.251-255
    • /
    • 2015
  • Unsteady Shock-Induced Combustion has been studied for the past few decades since it is considered as one of the potential ways to reach supersonic flights. Experimental observations of Unsteady SIC were observed as early as 1960's. But Lehr was the first to report in detail the mechanisms of Shock-Induced Combustion experimentally. Numerical Studies on SIC were helpful in explaining the insight into the oscillatory behaviour in the mid 90's to early 2000's. Detailed reaction mechanisms is required to prediction the SIC flowfield more in detail. However at that time, very few reaction mechanisms on hydrogen-oxidation were reported. In the last decade, various number of hydrogen reaction mechanisms were reported. In this study, an attempt has been made to analyze the effect of various reaction mechanisms in an unsteady mode of Shock-Induced Combustion.

  • PDF

Thermal Flow Analysis of Operating Parameters in Autothermal Reformer (자열개질기의 운용조건에 따른 열유동 수치해석)

  • Park, Seung-Hwan;Kim, Jin-Wook;Park, Dal-Yung;Kim, Jae-Dong;Lee, Do-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.14 no.6
    • /
    • pp.61-67
    • /
    • 2011
  • The study is to analyze the chemical and heat-flow reactions in the hydrogen generation unit(autothermal reformer), using computational numerical tools. Autothermal reformer(ATR) is involved in complex chemical reaction, mass and heat transfer due to exothermic and endothermic reactions. Therefore it is necessary to reveal the effects of various operation parameters and geometries on the ATR performance by using numerical analysis. Numerical analysis needs to dominant chemical reactions that includes Full Combustion(FC) reaction, Steam Reforming(SR) reaction, Water-Gas Shift(WGS) reaction and Direct Steam Reforming(DSR) reaction. The objective of the study is to improve theoretically the reformer design capability for the goal of high hydrogen production in the autothermal reformer using methane. Hydrogen production reached maximum in a certain value of Oxygen to Carbon Ratio(OCR) or Steam to Carbon Ratio(SCR). When the longitudinal distance to dimeter ratio(L/D) is increased, hydrogen production increases.

A Study on Anti-Icing Design by Conjugate Heat Transfer Analysis in a Lab-Scale Printed Circuit Heat Exchanger for Supply of Cryogenic High Pressure Liquid Hydrogen (극저온 고압액체수소 공급을 위한 실험실 규모 인쇄기판 열교환기의 복합열전달 해석을 통한 방빙설계에 관한 연구)

  • SOHN, SANGHO;KIM, WOOKYOUNG
    • Journal of Hydrogen and New Energy
    • /
    • v.33 no.5
    • /
    • pp.541-549
    • /
    • 2022
  • This study investigates anti-icing design by conjugate heat transfer analysis in lab-scale printed circuit heat exchanger (PCHE) for supply of cryogenic high pressure liquid hydrogen. The conjugate heat transfer analysis by using computational dynamics (CFD) provided various temperature distributions at important locations in PCHE heat exchanger and predicted the possibility of freezing in hot channel. And, the effect of inlet temperature of glycol water was analyzed in order to resolve the freezing problem in PCHE.

Experimental and Numerical Study on Flow Characteristics of a Common Exhaust System for Multiple SOFCs (SOFC용 복합 배기 시스템 유동 특성에 관한 실험 및 수치해석적 연구)

  • DAEWOONG JUNG;JONGHYUK YOON;HYOUNGWOON SONG
    • Journal of Hydrogen and New Energy
    • /
    • v.34 no.6
    • /
    • pp.657-666
    • /
    • 2023
  • In this study, experiments and numerical analysis were conducted to investigate the exhaust gas flow in a common exhaust system of multiple solid oxide fuel cells. The system was fabricated based on KGS code and operated within a pressure range of 0.12 kPa, with flow rates ranging from 79.1 to 103.4 L/min. Numerical modeling was validated with a mean absolute error of 3.8% for pressure results. The study assessed the impact of changes in area ratio and emergency stops on pressure distribution, velocity vectors, and wall shear stress. The findings revealed no significant factors causing high differential pressure or backflow.

A Comparison with CFD Simulation and Experiment for Steam-methane Reforming Reaction in Double pipe Continuous Reactor (이중관형 연속 반응기에서 수증기-메탄 개질반응의 실험 및 CFD 시뮬레이션)

  • Shin, Dong-Woo;Kim, Lae Hyun
    • Journal of Energy Engineering
    • /
    • v.22 no.2
    • /
    • pp.226-236
    • /
    • 2013
  • The heat distribution and internal flow from the efficiency of actual reformer and specification variation, using the computer simulation and experiment about the steam methane reforming reaction which uses the high temperature reformer. Reaction model from steam refoemer uses the steam response model developed by Xu & Froment.As result we supposed the chemical react Steam Reforming(SR), Water Gas Shift(WGS), and Direct Steam Reforming(DSR) from the inner high temperature reformer dominates the response has dissimilar response. According to result of steam methane reforming reaction exam using high temperature reformer, we figured out when Steam Carbon Ratio(SCR) increase, number of hydrogen yield increases but methane decreases. When comparing and examining between design with one inlet and two inlet, result came out one inlet design is more outstanding at thermal distribution and internal flow, hydrogen yield in one inlet design than two inlet design.

Analysis of the Deformed Unit Cell by Clamping Force Through the FEM and CFD Interaction (FEM과 CFD 연동을 통한 스택 체결 시 압력에 의해 변형된 단위 전지 해석)

  • YOO, BIN;LIM, KISUNG;JU, HYUNCHUL
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.4
    • /
    • pp.228-235
    • /
    • 2021
  • Polymer electrolyte membrane fuel cells (PEMFC) are currently being used in various transport applications such as drones, unmanned aerial vehicles, and automobiles. The power required is different according to the type of use, purpose, and the conditions adjusted using a cell stack. The fuel cell stack is compressed to reduce the size and prevent fuel leakage. The unit cells that make up the cell stack are subjected to compression by clamping force, which makes geometrical changes in the porous media and it impacts on cell performance. In this study, finite elements method (FEM) and computational fluid dynamics (CFD) analysis for the deformed unit cell considering the effects of clamping force is performed. First, structural analysis using the FEM technique over the deformed gas diffusion layer (GDL) considering compression is carried out, and the resulting porosity changed in the GDL is calculated. The PEMFC model is then verified by a three-dimensional, two-phase fuel cell simulation applying the physical properties and geometry obtained before and after compression. The detailed simulation results showed different concentration distributions of fuel between the original and deformed geometry, resulting in the difference in the distribution of current density is represented at compressed GDL region with low oxygen concentration.

Parameter Study of Boiling Model for CFD Simulation of Multiphase-Thermal Flow in a Pipe

  • Chung, Soh-Myung;Seo, Yong-Seok;Jeon, Gyu-Mok;Kim, Jae-Won;Park, Jong-Chun
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.1
    • /
    • pp.50-58
    • /
    • 2021
  • The demand for eco-friendly energy is expected to increase due to the recently strengthened environmental regulations. In particular, the flow inside the pipe used in a cargo handling system (CHS) or fuel gas supply system (FGSS) of hydrogen transport ships and hydrogen-powered ships exhibits a very complex pattern of multiphase-thermal flow, including the boiling phenomenon and high accuracy analysis is required concerning safety. In this study, a feasibility study applying the boiling model was conducted to analyze the multiphase-thermal flow in the pipe considering the phase change. Two types of boiling models were employed and compared to implement the subcooled boiling phenomenon in nucleate boiling numerically. One was the "Rohsenow boiling model", which is the most commonly used one among the VOF (Volume-of-Fluid) boiling models under the Eulerian-Eulerian framework. The other was the "wall boiling model", which is suitable for nucleate boiling among the Eulerian multiphase models. Moreover, a comparative study was conducted by combining the nucleate site density and bubble departure diameter model that could influence the accuracy of the wall boiling model. A comparison of the Rohsenow boiling and the wall boiling models showed that the wall boiling model relatively well represented the process of bubble formation and development, even though more computation time was consumed. Among the combination of models used in the wall boiling model, the simulation results were affected significantly by the bubble departure diameter model, which had a very close relationship with the grid size. The present results are expected to provide useful information for identifying the characteristics of various parameters of the boiling model used in CFD simulations of multiphase-thermalflow, including phase change and selecting the appropriate parameters.

A Study of Numerical Analysis on Mixed Combustion Characteristics in a Gasoline Direct Injection Engine with Premixed Hydrogen (수소 예혼합 가솔린 직접분사 엔진의 혼소특성에 관한 수치해석 연구)

  • Bae, Jaeok;Choi, Minsu;Suh, Hyunuk;Jeon, Chunghwan
    • Journal of Hydrogen and New Energy
    • /
    • v.24 no.6
    • /
    • pp.524-534
    • /
    • 2013
  • Gasoline direct injection(GDI) engine has a high thermal efficiency, but it has a problem to increase carbon emissions such as soot and $CO_x$. In this study, the objective is to analyze numerically a problem for adding the hydrogen during the intake stroke so as to reduce the injected amount of gasoline in GDI engines. For selection of the base model, the cylinder pressure of simulation is matched to experimental data. The numerical analysis are carried out by a CFD model with the hydrogen addition of 2%, 3% and 4% on the volume basis. In the case of 3% hydrogen addition, the injected gasoline amount is only changed to match the maximum pressure of simulation to that of the base model for additional study. It is found that the combustion temperature and pressure increase with the hydrogen addition. And NO emission also increases because of the higher combustion temperature. $CO_x$ emissions, however, are reduced due to the decrease of injected gasoline amount. Also, as the injected gasoline amount is reduced for the same hydrogen addition ratio, the gross indicated work is no significant, But NO and $CO_x$ emissions are considerably decreased. On the order hand, $CO_x$ emissions of two cases are more decreased and their gross indicated works are higher obtained than those of the base model.