Browse > Article
http://dx.doi.org/10.7316/KHNES.2022.33.5.541

A Study on Anti-Icing Design by Conjugate Heat Transfer Analysis in a Lab-Scale Printed Circuit Heat Exchanger for Supply of Cryogenic High Pressure Liquid Hydrogen  

SOHN, SANGHO (Department of Thermal Energy Solution, Innovative Energy Machinery Research Division, Korea Institute of Machinery and Materials)
KIM, WOOKYOUNG (Department of Thermal Energy Solution, Innovative Energy Machinery Research Division, Korea Institute of Machinery and Materials)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.33, no.5, 2022 , pp. 541-549 More about this Journal
Abstract
This study investigates anti-icing design by conjugate heat transfer analysis in lab-scale printed circuit heat exchanger (PCHE) for supply of cryogenic high pressure liquid hydrogen. The conjugate heat transfer analysis by using computational dynamics (CFD) provided various temperature distributions at important locations in PCHE heat exchanger and predicted the possibility of freezing in hot channel. And, the effect of inlet temperature of glycol water was analyzed in order to resolve the freezing problem in PCHE.
Keywords
Cryogenic liquid hydrogen; PCHE; Anti-icing; Conjugate heat transfer; Computational flow dynamics;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 T. Kim, B. I. Choi, Y. S. Han, and K. H. Do, "Thermodynamic analysis of a hydrogen liquefaction process for a hydrogen liquefaction pilot plant with a small capacity", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 1, 2020, pp. 41-48, doi: https://doi.org/10.7316/KHNES.2020.31.1.41.   DOI
2 J. W. Leachman, R. T. Jacobsen, S. G. Penoncello, and E. W. Lemmon, "Fundamental equations of state for parahydrogen, normal hydrogen, and orthohydrogen", J. Phys. Chem. Ref. Data, Vol. 38, No. 721, 2009, pp. 721-748, doi: https://doi.org/10.1063/1.3160306.   DOI
3 M. Ichard, Q. R. Hansen, P. Middha, and D. Willoughby, "CFD computations of liquid hydrogen releases", Int. J. Hydrogen Energy, Vol. 37, No. 22, 2012, pp. 17380-17389, doi: https://doi.org/10.1016/j.ijhydene.2012.05.145.   DOI
4 S. Baek, J. H. Kim, S. Jeong, and J. Jung, "Development of highly effective cryogenic printed circuit heat exchanger (PCHE) with low axial conduction", Cryogenics, Vol. 52, No. 79, 2012, pp. 366-374, doi: https://doi.org/10.1016/j.cryogenics.2012.03.001.   DOI
5 ASTM, "Standard test method for freezing point of aqueous engine coolants", ASTM D117717, 2017. Retrieved from https://www.astm.org/Standards/D1177.htm.
6 F. Huerta and V. Vesovic, "CFD modelling of the isobaric evaporation of cryogenic liquids in storage tanks", Int. J. Heat and Mass Transfer, Vol. 176, 2021, pp. 121419, doi: https://doi.org/10.1016/j.ijheatmasstransfer.2021.121419.   DOI
7 SAE, "Fueling protocols for light duty gaseous hydrogen surface vehicles J2601_202005", SAE MOBILUS, 2020. Retrieved from https://www.sae.org/standards/content/j2601_202005/.
8 1 O. Wilhelmsen, D. Berstad, A. Aasen, P. Neksa, and G. Skaugen, "Reducing the exergy destruction in the cryogenic heat exchangers of hydrogen liquefaction processes", Int. J. Hydrogen Energy, Vol. 43, No. 10, 2018, pp. 5033-5047, doi: https://doi.org/10.1016/j.ijhydene.2018.01.094.   DOI
9 B. Sun, D. Wadnerkar, R. P. Utikar, M. Tade, N. Kavanagh, S. Faka, G. M. Evans, and V. K. Pareek, "Modeling of cryogenic liquefied natural gas ambient air vaporizers", Ind. Eng. Chem. Res., Vol. 57, No. 28, 2018, pp. 9281-9291, doi: https://doi.org/10.1021/acs.iecr.8b01226.   DOI
10 D. C. Lee, A. Handry, H. S. Chung, and H. M. Jeong, "Numerical analysis of LNG vaporizer heat transfer characteristic in LNG fuel ship", Journal of the Korean Society of Marine Engineering, Vol. 37, No. 1, 2013, pp. 22-28, doi: https://doi.org/10.5916/jkosme.2013.37.1.22.   DOI
11 D. Popov, K. Fikiin, B. Stankov, G. Alvarez, M. YoubiIdrissi, A. Damas, J. Evans, and T. Brown, "Cryogenic heat exchangers for process cooling and renewable energy storage: a review", App. Thermal Eng, Vol. 153, 2019, pp. 275-290, doi: https://doi.org/10.1016/j.applthermaleng.2019.02.106.   DOI
12 P. J. Donaubauer, U. Cardella, L. Decker, and H. Klein, "Kinetics and heat exchanger design for catalytic orthopara hydrogen conversion during liquefaction", Chem. Eng. Technol., Vol. 42, No. 3, 2019, pp. 669-679, doi: https://doi.org/10.1002/ceat.201800345.   DOI
13 S. Sohn and B. I. Choi, "A study on thermal design of printed circuit heat exchanger for supply of cryogenic high pressure liquid hydrogen", Trans Korean Hydrogen New Energy Soc, Vol. 32, No. 5, 2021, pp. 347-355, doi: https://doi.org/10.7316/KHNES.2021.32.5.347.   DOI
14 ANSYS, "Fluent theory manual", 2013.