• Title/Summary/Keyword: Hydrodynamic evaluation

Search Result 121, Processing Time 0.027 seconds

Hydrodynamic design of an underwater hull cleaning robot and its evaluation

  • Lee, Man Hyung;Park, Yu Dark;Park, Hyung Gyu;Park, Won Chul;Hong, Sinpyo;Lee, Kil Soo;Chun, Ho Hwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.4
    • /
    • pp.335-352
    • /
    • 2012
  • An underwater hull cleaning robot can be a desirable choice for the cleaning of large ships. It can make the cleaning process safe and economical. This paper presents a hydrodynamic design of an underwater cleaning robot and its evaluation for an underwater ship hull cleaning robot. The hydrodynamic design process of the robot body is described in detail. Optimal body design process with compromises among conflicting design requirements is given. Experimental results on the hydrodynamic performance of the robot are given.

Hydrodynamic Evaluation Method for Developing the Inflatable Kayak (인플래터블 카약 개발을 위한 유체역학적 성능평가 기법)

  • Ki, Jae-Seok;Hah, Chong-Ku;Jang, Ho-Yun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.5
    • /
    • pp.627-634
    • /
    • 2012
  • This study includes results of basin test for hydrodynamic performance evaluation with a developed inflatable kayak. Inclining experiment and turning trial experiment of the developed inflatable kayak and an abroad product were carried out in the Ocean engineering Basin. Resistance test was carried out by using downscale model in the circulating water channel. Through method of following performance evaluation, advantage and disadvantage of the developed inflatable kayak were compared with those of the abroad product.

3-D Vibration Analysis of Floating Structures Like Ships Using FEM-BEM

  • Kim, Byung-Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1990.10a
    • /
    • pp.107-112
    • /
    • 1990
  • In the vibration analysis of structure in fluid such as ships and offshore structures, the hydrodynamic added mass considerably affects the result of analysis. Therefore correct evaluation of the hydrodynamic added mass effect is required for an accurate analysis. But the correct evaluation of the effect is not simple because the added mass varies with the mode shape of vibration as well as the configuration of the structure. The universal method employed to evaluate added mass in ship hull vibration is Lewis's method via the introduction of 3 dimensional correction factor. But this conventional method is valid only for beam-like vibration.

  • PDF

A Study on the Evaluation of Hydrodynamic Performance of Trileaflet Prosthetic Heart Valves (삼엽식 인공판막의 수력학적 성능평가에 관한 연구)

  • 김혁필;이계한
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.2
    • /
    • pp.147-156
    • /
    • 1997
  • Various prosthetic heart valves have been developed and used clinically, but they have problems, such as thrombogenecity, hemoltsis, high cost and low durability. New types of trileaflet polymer heart valves have been developed in order to use them as inlet and outlet valves in a ventricular assist device. The aim of this study is to determine the hydrodynamic effectiveness of the newly designed trileaflet polymer valves and their feasibility for temporary use in the blood pumps. Trileaflet polymer valves are made of polyurethane, because of its good blood compatibility, high tonsil strength and good resistance to fatigue. An in vitro experimental investigation was perf'ormed in order to ev91ua1e hydrodynamic performance of the trileaflet polymer valves having different design and fabrication tech- niques. The St. Jude Medical valve (SJMV) and floating-type monoleaflet polymer valve (MLPV) were also tested The pressure drop across the valve, leakage volume, and the flow patterns mere investigated for valves. The result of comparative tests showed that the trileaflet polymer valves had a better hydrodynamic performance than the others. TPV which has two stable membrane shape showed the lowest back flow. The pressure hops of TPVs were lower than that of MLPV, but slightly higher than SJMV. The hydrodynamic performance of valves under the pulastile flow showed the similar results as steady flow. The velocity profiles and turbulent intensities were measured at the distal sites of valves using a hot-film anemometer. Central flow was maintained in trileaflet polymer valves, and the maximum turbulent intensities were lower in TPVs comparing to MLPV.

  • PDF

Hydrodynamic evaluation for developing the inflatable kayak (인플래터블 카약 개발을 위한 유체역학적 성능평가)

  • Hah, Chong-Ku;Lim, Lee-Young;Ki, Jae-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.623-630
    • /
    • 2013
  • This study was to evaluate hydrodynamic performance evaluation between an abroad product, a developed inflatable kayak and new developed kayaks. In order to test, inclining and turning trial test were carried out in the Ocean engineering Basin. Also, resistance test was carried out using a reduced scale model in the circulating water channel. In conclusion, stability of KONA was evaluated was the most greatest, the coefficient of resistance and center of gravity from RD-FK-12 were considerable, and turning performance of RD-FK-11 was greater than this of KONA and RD-FK-12.

Design of Performance Evaluation System and Measurement of Dynamic Behavior for Fluid Hydrodynamic Bearing in HDD (HDD용 유체동압베어링 성능평가 시스템 설계 및 동적거동 측정)

  • Kang, Jung-Woo;Lee, Tae-Whi;Lee, Hyoung-Wook;Park, Sung-Jun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.10
    • /
    • pp.1159-1165
    • /
    • 2011
  • The recording density of HDD is increasing in ratio of 100% each year. Because the increasing of recording density requires the feature of high rotation, fixation and low-noise, fluid hydrodynamic bearing(FDB) has been paid attention to overcome a limitation in ball bearing. Most of researches related to improving performance of FDB have been studied in Japan which has 80% more market share of HDD spindle motor assembly. Main subject of studies are about for the design of the groove shape, manufacturing process of fluid dynamic bearing, performance evaluation and measurement. In HDD, non-repeatable runout(NRRO) is most important parameter which determines the performance of HDD spindle system because NRRO is unpredictable that cannot be compensated in head/slider servo system. In this study, performance evaluation system can measure dynamic behaviors were designed and methodology for calculating imbalance, RRO, and NRRO were proposed.

Development of Performance Evaluation System for Hydrodynamic Bearing in Hard Disk Drive (초소형 HDD용 유체 동압베어링의 동적 성능평가 시스템)

  • Park, S.J.;Lee, H.W.;Song, J.R.;Lee, H.J.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.66-68
    • /
    • 2009
  • Most hard disk spindles currently used are supported by oil lubricated hydrodynamic bearings. However, in the trend of increasing spindle speed and reducing size and cost, dynamic behaviors of the bearing such as RRO and NRRO are more important. A novel system evaluating dynamic behavior of hydrodynamic bearings in had disk drive was developed to analyze the effect of groove shapes and parameters.

  • PDF

Experimental Characterization of Hydrodynamic Bearing Spindle Motor for High Performance Hard Disk Drive (고성능 하드 디스크 드라이브 개발을 위한 유체베어링 스핀들 모터의 특성분석(현장개발사례: SAMSUNG HDD ′SPINPOINT POLARIS SERIES′))

  • Son, Young;Hwang, Tae-Yeon;Han, Tun-Sik;Kang, Seong-Woo;Morris, Frank
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.930-935
    • /
    • 2001
  • The experimental characterization of hydrodynamic bearing spindle motor is performed for the practical implementation of high-performance hard disk drive system. Firstly, the design concept of hydrodynamic bearing for the disk drive system is addressed including the herringbone grooved journal bearing, the spiral grooved thrust bearing, capillary seal design, and the viscous pumping of fluid. Secondly, the experimental evaluation is performed for the disk drive system in which the hydrodynamic bearing spindle motor is implemented and its dynamic performances are compared with conventional ball-bearing spindle motor. The key parameters include NRRO(Non Repeatable Run-Out), disk dynamics, acoustics, and resultant PES (Position Error Signal). Finally, the external gyro-exciting test results including 200k CSS(Continuous Start-Stop) on three angular attitudes(0,90, 180 degree) are presented in order to verify the practical reliability of disk drive system subject to the gyro-motion of hydrodynamic bearing spindle motor.

  • PDF

Evaluation of Parameters in Hydrodynamic Model (동수역학모형의 매개변수 산정)

  • Yun, Tae-Hun;Lee, Jong-Uk;Jagal, Sun-Dong
    • Journal of Korea Water Resources Association
    • /
    • v.33 no.1
    • /
    • pp.39-50
    • /
    • 2000
  • Generally speaking, a hydrodynamic model needs a friction coefficient (Manning coefficient or Chezy coefficient) and eddy viscosity. For numerical solution the coefficients are usually determined by recursive calculations. The eddy viscosity in numerical model plays physical diffusion in flow and also acts as numerical viscosity. Hence its value has influence on the stability of numerical solution and for these reasons a consistent evaluation procedure is needed. By using records of stage and discharge in the downstream reach of the Han river, I-D models (HEC-2 and NETWORK) and 2-D model (SMS), estimated values of Manning coefficient and an empirical equation for eddy viscosity are presented. The computed results are verified through the recorded flow elevation data.n data.

  • PDF

Hybrid Element Method for Dynamic Responses of Three-Dimensional Offshore Structures (복합요소법을 이용한 3-차원 해양구조물의 동적응답)

  • Lee, Tae-Gab;Park, Woo-Sun;Pyun, Chong-Kun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.2 no.3
    • /
    • pp.152-161
    • /
    • 1990
  • In this paper, a hybrid element method(HEM) for the evaluation of the hydrodynamic responses of arbitrary-shaped offshore structures is studied. The hydrodynamic pressure forces are assumed to be inertially dominated, and viscous effects are neglected. The mathematical formulation procedure of the hybrid element method with the analytical eigenseries solution is established systematically. The computer program based on the HEM has been developed, and applied to solving the wave diffraction and radiation problems for arbitrary shaped structures. From comparisons of the results obtained by using the other avaliable solution methods, the method for the evaluation of the hydrodynamic forces using the HEM and the computer program developed here have been proved to be valid.

  • PDF