• Title/Summary/Keyword: Hydrodynamic Similarity

Search Result 27, Processing Time 0.022 seconds

Series Design of Compressors for Two-Stage Centrifugal Chiller

  • Jinhee Jeong;Lee, Hyeongkoo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.288-295
    • /
    • 2003
  • A preliminary series design of compressors for a two-stage centrifugal chiller is suggested. Six groups of hydrodynamically similar compressors, ranging from 233RT to 1,200RT, are introduced. Flow rates, impeller diameters, and wheel speeds for each group are determined from hydrodynamic similarity to share impellers of adjacent groups. It is expected that these compressors can have the same performance and efficiency from the smallest model to the largest one.

A Comparison of Optimization Algorithms: An Assessment of Hydrodynamic Coefficients

  • Kim, Daewon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.3
    • /
    • pp.295-301
    • /
    • 2018
  • This study compares optimization algorithms for efficient estimations of ship's hydrodynamic coefficients. Two constrained algorithms, the interior point and the sequential quadratic programming, are compared for the estimation. Mathematical optimization is designed to get optimal hydrodynamic coefficients for modelling a ship, and benchmark data are collected from sea trials of a training ship. A calibration for environmental influence and a sensitivity analysis for efficiency are carried out prior to implementing the optimization. The optimization is composed of three steps considering correlation between coefficients and manoeuvre characteristics. Manoeuvre characteristics of simulation results for both sets of optimized coefficients are close to each other, and they are also fit to the benchmark data. However, this similarity interferes with the comparison, and it is supposed that optimization conditions, such as designed variables and constraints, are not sufficient to compare them strictly. An enhanced optimization with additional sea trial measurement data should be carried out in future studies.

Analysis of Hydrodynamic Similarity in Three-Phase Fluidized Bed Processes (삼상유동층 공정에서 수력학적 Similarity 해석)

  • Lim, Ho;Lim, Hyun-Oh;Jin, Hae-Ryoung;Lim, Dae-Ho;Kang, Yong
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.790-797
    • /
    • 2011
  • Hydrodynamic similarity was analyzed by employing scaling factor in three phase fluidized beds. The scaling factor was defined based on the holdups of gas, liquid and solid particles and effectivity volumetric flux of fluids between the two kinds of fluidized beds with different column diameter. The column diameter of one was 0.102 m and that of the other was 0.152 m. Filtered compressed air, tap water and glass bead of which density was 2,500 kg/$m^3$ were used as gas, liquid and solid phases, respectively. The individual phase holdups in three phase fluidized beds were determined by means of static pressure drop method. Effects of gas and liquid velocities and particle size on the scaling factors based on the holdups of each phase and effective volumetric flux of fluids were examined. The deviation of gas holdup between the two kinds of three phase fluidized beds decreased with increasing gas or liquid velocity but increased with increasing fluidized particle size. The deviation of liquid holdup between the two fluidized beds decreased with increasing gas or liquid velocity or size of fluidized solid particles. The deviation of solid holdup between the two fluidized beds increased with increasing gas velocity or particle size, however, decreased with increasing liquid velocity. The deviation of effective volumetric flux of fluids between the two fluidized beds decreased with increasing gas velocity or particle size, but increased with increasing liquid velocity. The scaling factor, which was defined in this study, could be effectively used to analyze the hydrodynamic similarity in three phase fluidized processes.

The Hydrodynamic Stability of Natural Convection Flows Adjacent to an Inclined Isothermal Surface Submerged in Cold, Pure Water (순수한 찬물속에 잠겨있는 경사진 등온벽면 부근의 자연대류에 관한 수동력학적 안정성)

  • Hwang, Y.K.;Jang, M.R.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.4
    • /
    • pp.268-278
    • /
    • 1990
  • Hydrodynamic stability equations are formulated for natural convection flows adjacent to a heated or cooled, inclined, isothermal surface in pure water at $4^{\circ}C$, where the density variation with temperature becomes nonlinear. The resulting stability equations, when reduced to ordinary differential equations by a similarity transformation, constitute a two-point boundary-value problem, which was solved numerically. It is found from the obtained stability results that the neutral stability curves are systematically shifted to have lower critical Grashof numbers, as the inclination angle of upward-facing plate increases. Also, the nose of the neutral stability curve becomes blunter as the angle increases. It implies that the greater the inclination of the upward-facing plate, the more susceptible of the flow to instability for the wide range of disturbance wave number and frequency.

  • PDF

Hydrodynamic Stability of Buoyancy-induced Flows Adjacent to a Vertical Isothermal Surface in Cold Pure Water (차가운 물에 잠겨있는 수직운동 벽면주위의 자연대류에 관한 안정성)

  • 황영규
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.2
    • /
    • pp.630-643
    • /
    • 1991
  • The hydrodynamic stability equations are formulated for buoyancy-induced flows adjacent to a vertical, planar, isothermal surface in cold pure water. The resulting stability equations, when reduced to ordinary differential equation by a similarity transformation, constitute a two-point boundary-value(eigenvalue) problem, which was numerically solved for various values of the density extremum parameter R=( $T_{m}$ - $T_.inf./) / ( $T_{o}$ - $T_.inf./). These stability equations have been solved using a computer code designed to accurately solve two-point boundary-value problems. The present numerical study includes neutral stability results for the region of the flows corresponding to 0.0.leq. R. leq.0.15, where the outside buoyancy force reversals arise. The results show that a small amount of outside buoyancy force reversal causes the critical Grashof number $G^*/ to increase significantly. A further increase of the outside buoyancy force reversal causes the critical Grashof number to decrease. But the dimensionless frequency parameter $B^*/ at $G^*/ is systematically decreased. When the stability results of the present work are compared to the experimental data, the numerical results agree in a qualitative way with the experimental data.erimental data.

Numerical Analysis on Hydrodynamic Forces Acting on Side-by-Side Arranged Two-Dimensional Floating Bodies in Viscous Flows (점성유동장에 병렬배치된 2차원 부유체에 작용하는 유체력에 관한 수치해석)

  • Heo, Jae-Kyung;Park, Jong-Chun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.5
    • /
    • pp.425-432
    • /
    • 2012
  • Viscous flow fields of side-by-side arranged two-dimensional floating bodies are numerically simulated by a Navier-Stokes equation solver. Two identical bodies with a narrow gap are forced to heave and sway motions. Square and rounded bilge hull forms are compared to find out the effects of vortex shedding on damping force. Wave height, force RAOs, added mass and damping coefficients including non-diagonal cross coefficients are calculated and a similarity between the wave height and force RAOs is discussed. CFD which can take into account of viscous damping and vortex shedding shows better results than linear potential theory.

Analysis of Hydrodynamic Similarity of Pressurized Three-Phase Slurry Bubble Column for its Design and Scale-up (가압 삼상슬러리 기포탑의 설계 및 Scale-up을 위한 수력학적 Similarity 해석)

  • Seo, Myung Jae;Lim, Dae Ho;Jin, Hae Ryong;Kang, Yong;Jung, Heon;Lee, Ho Tae
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.720-726
    • /
    • 2009
  • Hydrodynamic similarity was investigated in pressurized three-phase slurry bubble columns by selecting the bubble holdup and pressure drop as objective functions, for the effective design and scale-up of it. In addition, effects of operating variables on the bubble holdup with variation of column diameter were also analyzed. Gas velocity($U_G$), viscosity(${\mu}_{SL,eff}$) and surface tension(${\rho}_{SL}$) of slurry phase, density difference between the slurry and gas phases(${\rho}_{SL}-{\rho}_G$) depending on the operating pressure, pressure drop per unit length(${\Delta}P/L$), column diameter(D) and gravitational acceleration(g) were chosen as governing parameters in determining the bubble holdup and pressure drop in the column. From the dimensional analysis, four kinds of dimensionless groups were derived from the 7 parameters and 4 fundamental dimensions. Effects of dimensionless groups such as Reynolds, Froude and Weber numbers on the bubble holdup in the column were discussed. The pressure drop and bubble holdup could be predicted from the correlation of dimensionless groups effectively, which could be used as useful information for the design and scale-up of pressurized slurry bubble columns.

Developing a Three-dimensional Spectral Model Using Similarity Transform Technique (유사변환기법을 이용한 3차원 모델의 개발)

  • Kang, Kwan-Soo;So, Jae-Kwi;Jung, Kyung-Tae;Sonu, Jung Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.5 no.2
    • /
    • pp.107-120
    • /
    • 1993
  • This paper presents a new modal solution of linear three-dimensional hydrodynamic equations using similarity transform technique. The governing equations are first separated into external and internal mode equations. The solution of the internal mode equation then proceeds as in previous modal models using the Galerkin method but with expansion of arbitrary basis functions. Application of similarity transform to resulting full matrix equations gives rise to a set of uncoupled partial differential equations of which the unknowns are coefficients of mode vector. Using the transform technique a computationally efficient time integration is possible. In present from the model use Chebyshev polynomials for Galerkin solution of internal mode equations. To examine model performance the model is applied to a homogeneous, rectangular basin of constant depth under steady, uniform wind field.

  • PDF

A Three-Dimensional Galerkin-FEM Model Using Similarity Transform Technique (유사변환기법을 이용한 Galerkin-FEM모델)

  • 강관수;소재귀;정경태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.6 no.2
    • /
    • pp.174-185
    • /
    • 1994
  • This paper presents a modal solution of linear three-dimensional hydrodynamic equations using similarity transform technique. The solution over the vertical space domain is obtained using the Galerkin method with linear shape funtions (Galerkin-FEM model). Application of similarity transform to resulting tri-diagonal matrix equations gives rise 掠 a set of uncoupled partial differential equations of which the unknowns are coefficients of mode shape vectors. The proposed method.

  • PDF

Development of 2D Depth-Integrated Hydrodynamic and Transport Model Using a Compact Finite Volume Method (Compact Finite Volume Method를 이용한 수심적분형 흐름 및 이송-확산 모형 개발)

  • Kim, Dae-Hong
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.473-480
    • /
    • 2012
  • A two-dimensional depth-integrated hydrodynamic and a depth-averaged passive scalar transport models were developed by using a Compact Finite Volume Method (CFVM) which can assure a higher order accuracy. A typical wave current interaction experimental data set was compared with the computed results by the proposed CFVM model, and resonable agreements were observed from the comparisons. One and two dimensional scalar advection tests were conducted, and very close agreements were observed with very little numerical diffusion. Finally, a turbulent mixing simulation was done in an open channel flow, and a reasonable similarity with LES data was observed.