• Title/Summary/Keyword: Hydro-mechanical coupled model

Search Result 49, Processing Time 0.026 seconds

Modeling of shallow landslides in an unsaturated soil slope using a coupled model

  • Kim, Yongmin;Jeong, Sangseom
    • Geomechanics and Engineering
    • /
    • v.13 no.2
    • /
    • pp.353-370
    • /
    • 2017
  • This paper presents a case study and numerical investigation to study the hydro-mechanical response of a shallow landslide in unsaturated slopes subjected to rainfall infiltration using a coupled model. The coupled model was interpreted in details by expressing the balance equations for soil mixture and the coupled constitutive equations. The coupled model was verified against experimental data from the shearing-infiltration triaxial tests. A real case of shallow landslide occurred on Mt. Umyeonsan, Seoul, Korea was employed to explore the influence of rainfall infiltration on the slope stability during heavy rainfall. Numerical results showed that the coupled model accurately predicted the poromechanical behavior of a rainfall-induced landslide by simultaneously linking seepage and stress-strain problems. It was also found that the coupled model properly described progress failure of a slope in a highly transient condition. Through the comparisons between the coupled and uncoupled models, the coupled model provided more realistic analysis results under rainfall. Consequently, the coupled model was found to be feasible for the stability and seepage analysis of practical engineering problems.

Stability Analysis of Unsaturated Soil Slope by Coupled Hydro-mechanical Model Considering Air Flow (공기흐름을 고려한 수리-역학적 연동모델에 의한 불포화 토사사면의 안정해석)

  • Cho, Sung-Eun
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.1
    • /
    • pp.19-33
    • /
    • 2016
  • Stability analysis based on the limit equilibrium method combined with the result of infiltration analysis is commonly used to evaluate the effect of rainfall infiltration on the slope stability. Soil is a three-phase mixture composed of solid particle, water and air. Therefore, a fully coupled mixture theories of stress-deformation behavior and the flow of water and air should be used to accurately analyze the process of rainfall infiltration through soil slope. The purpose of this study is to study the effect of interaction of air and water flow on the mechanical stability of slope. In this study, stability analyses based on the coupled hydro-mechanical model of three-phases were conducted for slope of weathered granite soil widespread in Korea. During the process of hydro-mechanical analysis strength reduction technique was applied to evaluate the effect of rainfall infiltration on the slope stability. The results showed an increase of air pressure during infiltration because rain water continuously displaced the air in the unsaturated zone. Such water-air interaction in the pore space of soil affects the stress-deformation behavior of slope. Therefore, the results from the three-phase model showed different behavior from the solid-water model that ignores the transport effect of air in the pores.

Fault Reactivation Modeling Using Coupled TOUGH2 and FLAC3D Interface Model: DECOVALEX-2019 Task B (TOUGH2-FLAC3D Interface 모델을 통한 단층 재활성 모델링: DECOVALEX-2019 Task B)

  • Park, Jung-Wook;Park, Eui-Seob;Lee, Changsoo
    • Tunnel and Underground Space
    • /
    • v.30 no.4
    • /
    • pp.335-358
    • /
    • 2020
  • We present a numerical model to simulate coupled hydro-mechanical behavior of fault using TOUGH-FLAC simulator. This study aims to develop a numerical method to estimate fluid injection-induced fault reactivation in low permeability rock and to access the relevant hydro-mechanical stability in rock as part of DECOVALEX-2019 Task B. A coupled fluid flow and mechanical interface model to explicitly represent a fault was suggested and validated from the applications to benchmark simulations and the field experiment at Mont Terri underground laboratory in Switzerland. The pressure build-up, hydraulic aperture evolution, displacement, and stress responses matched those obtained at the site, which indicates the capability of the model to appropriately capture the hydro-mechanical processes in rock fault.

3D thermo-hydro-mechanical coupled discrete beam lattice model of saturated poro-plastic medium

  • Hadzalic, Emina;Ibrahimbegovic, Adnan;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.9 no.2
    • /
    • pp.125-145
    • /
    • 2020
  • In this paper, we present a 3D thermo-hydro-mechanical coupled discrete beam lattice model of structure built of the nonisothermal saturated poro-plastic medium subjected to mechanical loads and nonstationary heat transfer conditions. The proposed model is based on Voronoi cell representation of the domain with cohesive links represented as inelastic Timoshenko beam finite elements enhanced with additional kinematics in terms of embedded strong discontinuities in axial and both transverse directions. The enhanced Timoshenko beam finite element is capable of modeling crack formation in mode I, mode II and mode III. Mode I relates to crack opening, mode II relates to in-plane crack sliding, and mode III relates to the out-of-plane shear sliding. The pore fluid flow and heat flow in the proposed model are governed by Darcy's law and Fourier's law for heat conduction, respectively. The pore pressure field and temperature field are approximated with linear tetrahedral finite elements. By exploiting nodal point quadrature rule for numerical integration on tetrahedral finite elements and duality property between Voronoi diagram and Delaunay tetrahedralization, the numerical implementation of the coupling results with additional pore pressure and temperature degrees of freedom placed at each node of a Timoshenko beam finite element. The results of several numerical simulations are presented and discussed.

Review on Methods of Hydro-Mechanical Coupled Modeling for Long-term Evolution of the Natural Barriers

  • Chae-Soon Choi;Yong-Ki Lee;Sehyeok Park;Kyung-Woo Park
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.20 no.4
    • /
    • pp.429-453
    • /
    • 2022
  • Numerical modeling and scenario composition are needed to characterize the geological environment of the disposal site and analyze the long-term evolution of natural barriers. In this study, processes and features of the hydro-mechanical behavior of natural barriers were categorized and represented using the interrelation matrix proposed by SKB and Posiva. A hydro-mechanical coupled model was evaluated for analyzing stress field changes and fracture zone re-activation. The processes corresponding to long-term evolution and the hydro-mechanical mechanisms that may accompany critical processes were identified. Consequently, practical numerical methods could be considered for these geological engineering issues. A case study using a numerical method for the stability analysis of an underground disposal system was performed. Critical stress distribution regime problems were analyzed numerically by considering the strata's movement. Another case focused on the equivalent continuum domain composition under the upscaling process in fractured rocks. Numerical methods and case studies were reviewed, confirming that an appropriate and optimized modeling technique is essential for studying the stress state and geological history of the Korean Peninsula. Considering the environments of potential disposal sites in Korea, selecting the optimal application method that effectively simulates fractured rocks should be prioritized.

Numerical modelling of coupled thermo-hydro-mechanical behavior of Heater Experiment-D (HE-D) at Mont Terri rock laboratory in Switzerland (스위스 Mont Terri rock laboratory에서 수행된 암반 히터시험(HE-D)에 대한 열-수리-역학적 복합거동 수치해석)

  • Lee, Changsoo;Choi, Heui-Joo;Kim, Geon-Young
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.242-255
    • /
    • 2020
  • The numerical simulations of Heater Experiment-D (HE-D) at the Mont Terri rock laboratory in Switzerland were performed to investigate an applicability of FLAC3D to reproduce the coupled thermo-hydro-mechanical (THM) behaviour in Opalinus Clay, as part of the DECOVLEX-2015 project Task B. To investigate the reliability of numerical simulations of the coupled behaviour using FLAC3D code, the simulation results were compared with the observations from the in-situ experiment, such as temperature at 16 sensors, pore pressure at 6 sensors, and strain at 22 measurement points. An anisotropic heat conduction model, fluid flow model, and transversely isotropic elastic model in FLAC3D successfully represented the coupled thermo-hydraulic behaviour in terms of evolution for temperature and pore pressure, however, performance of the models for mechanical behavior is not satisfactory compared with the measured strain.

Thermal volume change of saturated clays: A fully coupled thermo-hydro-mechanical finite element implementation

  • Wang, Hao;Qi, Xiaohui
    • Geomechanics and Engineering
    • /
    • v.23 no.6
    • /
    • pp.561-573
    • /
    • 2020
  • The creep and consolidation behaviors of clays subjected to thermal cycles are of fundamental importance in the application of energy geostructures. This study aims to numerically investigate the physical mechanisms for the temperature-triggered volume change of saturated clays. A recently developed thermodynamic framework is used to derive the thermo-mechanical constitutive model for clays. Based on the model, a fully coupled thermo-hydro-mechanical (THM) finite element (FE) code is developed. Comparison with experimental observations shows that the proposed FE code can well reproduce the irreversible thermal contraction of normally consolidated and lightly overconsolidated clays, as well as the thermal expansion of heavily overconsolidated clays under drained heating. Simulations reveal that excess pore pressure may accumulate in clay samples under triaxial drained conditions due to low permeability and high heating rate, resulting in thermally induced primary consolidation. Results show that four major mechanisms contribute to the thermal volume change of clays: (i) the principle of thermal expansion, (ii) the decrease of effective stress due to the accumulation of excess pore pressure, (iii) the thermal creep, and (iv) the thermally induced primary consolidation. The former two mechanisms mainly contribute to the thermal expansion of heavily overconsolidated clays, whereas the latter two contribute to the noticeable thermal contraction of normally consolidated and lightly overconsolidated clays. Consideration of the four physical mechanisms is important for the settlement prediction of energy geostructures, especially in soft soils.

Development of hydro-mechanical-damage coupled model for low to intermediate radioactive waste disposal concrete silos (방사성폐기물 처분 사일로의 손상연동 수리-역학 복합거동 해석모델 개발)

  • Ji-Won Kim;Chang-Ho Hong;Jin-Seop Kim;Sinhang Kang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.3
    • /
    • pp.191-208
    • /
    • 2024
  • In this study, a hydro-mechanical-damage coupled analysis model was developed to evaluate the structural safety of radioactive waste disposal structures. The Mazars damage model, widely used to model the fracture behavior of brittle materials such as rocks or concrete, was coupled with conventional hydro-mechanical analysis and the developed model was verified via theoretical solutions from literature. To derive the numerical input values for damage-coupled analysis, uniaxial compressive strength and Brazilian tensile strength tests were performed on concrete samples made using the mix ratio of the disposal concrete silo cured under dry and saturated conditions. The input factors derived from the laboratory-scale experiments were applied to a two-dimensional finite element model of the concrete silos at the Wolseong Nuclear Environmental Management Center in Gyeongju and numerical analysis was conducted to analyze the effects of damage consideration, analysis technique, and waste loading conditions. The hydro-mechanical-damage coupled model developed in this study will be applied to the long-term behavior and stability analysis of deep geological repositories for high-level radioactive waste disposal.

Hydro-mechanical interaction of reinforced concrete lining in hydraulic pressure tunnel

  • Wu, He-Gao;Zhou, Li;Su, Kai;Zhou, Ya-Feng;Wen, Xi-Yu
    • Structural Engineering and Mechanics
    • /
    • v.71 no.6
    • /
    • pp.699-712
    • /
    • 2019
  • The reinforced concrete lining of hydraulic pressure tunnels tends to crack under high inner water pressure (IWP), which results in the inner water exosmosis along cracks and involves typical hydro-mechanical interaction. This study aims at the development, validation and application of an indirect-coupled method to simulate the lining cracking process. Based on the concrete damage plasticity (CDP) model, the utility routine GETVRM and the user subroutine USDFLD in the finite element code ABAQUS is employed to calculate and adjust the secondary hydraulic conductivity according to the material damage and the plastic volume strain. The friction-contact method (FCM) is introduced to track the lining-rock interface behavior. Compared with the traditional node-shared method (NSM) model, the FCM model is more feasible to simulate the lining cracking process. The number of cracks and the reinforcement stress can be significantly reduced, which matches well with the observed results in engineering practices. Moreover, the damage evolution of reinforced concrete lining can be effectively slowed down. This numerical method provides an insight into the cracking process of reinforced concrete lining in hydraulic pressure tunnels.

Geomechanical and hydrogeological validation of hydro-mechanical two-way sequential coupling in TOUGH2-FLAC3D linking algorithm with insights into the Mandel, Noordbergum, and Rhade effects

  • Lee, Sungho;Park, Jai-Yong;Kihm, Jung-Hwi;Kim, Jun-Mo
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.437-454
    • /
    • 2022
  • The hydro-mechanical (HM) two-way sequential coupling in the TOUGH2-FLAC3D linking algorithm is validated completely and successfully in both M to H and H to M directions, which are initiated by mechanical surface loading for geomechanical validation and hydrological groundwater pumping for hydrogeological validation, respectively. For such complete and successful validation, a TOUGH2-FLAC3D linked numerical model is developed first by adopting the TOUGH2-FLAC3D linking algorithm, which uses the two-way (fixed-stress split) sequential coupling scheme and the implicit backward time stepping method. Two geomechanical and two hydrogeological validation problems are then simulated using the linked numerical model together with basic validation strategies and prerequisites. The second geomechanical and second hydrogeological validation problems are also associated with the Mandel effect and the Noordbergum and Rhade effects, respectively, which are three phenomenally well-known but numerically challenging HM effects. Finally, sequentially coupled numerical solutions are compared with either analytical solutions (verification) or fully coupled numerical solutions (benchmarking). In all the four validation problems, they show almost perfect to extremely or very good agreement. In addition, the second geomechanical validation problem clearly displays the Mandel effect and suggests a proper or minimum geometrical ratio of the height to the width for the rectangular domain to maximize agreement between the numerical and analytical solutions. In the meantime, the second hydrogeological validation problem clearly displays the Noordbergum and Rhade effects and implies that the HM two-way sequential coupling scheme used in the linked numerical model is as rigorous as the HM two-way full coupling scheme used in a fully coupled numerical model.