DOI QR코드

DOI QR Code

Fault Reactivation Modeling Using Coupled TOUGH2 and FLAC3D Interface Model: DECOVALEX-2019 Task B

TOUGH2-FLAC3D Interface 모델을 통한 단층 재활성 모델링: DECOVALEX-2019 Task B

  • Park, Jung-Wook (Geologic Environment Division, Korea Institute of Geoscience of Mineral Resources) ;
  • Park, Eui-Seob (Geologic Environment Division, Korea Institute of Geoscience of Mineral Resources) ;
  • Lee, Changsoo (Radioactive Waste Disposal Research Division, Korea Atomic Energy Research Institute)
  • 박정욱 (한국지질자원연구원 지질환경연구본부) ;
  • 박의섭 (한국지질자원연구원 지질환경연구본부) ;
  • 이창수 (한국원자력연구원 방사성폐기물처분연구부)
  • Received : 2020.08.13
  • Accepted : 2020.08.26
  • Published : 2020.08.31

Abstract

We present a numerical model to simulate coupled hydro-mechanical behavior of fault using TOUGH-FLAC simulator. This study aims to develop a numerical method to estimate fluid injection-induced fault reactivation in low permeability rock and to access the relevant hydro-mechanical stability in rock as part of DECOVALEX-2019 Task B. A coupled fluid flow and mechanical interface model to explicitly represent a fault was suggested and validated from the applications to benchmark simulations and the field experiment at Mont Terri underground laboratory in Switzerland. The pressure build-up, hydraulic aperture evolution, displacement, and stress responses matched those obtained at the site, which indicates the capability of the model to appropriately capture the hydro-mechanical processes in rock fault.

본 연구에서는 TOUGH-FLAC 연동해석기법을 통해 단층의 수리역학적 거동을 평가할 수 있는 수치해석 모델을 제안하였다. 이는 국제공동연구 DECOVALEX-2019 Task B의 일환으로 수행되었으며, 불투수성 암반 내 유체 주입으로 인한 단층의 재활성을 예측하고 주변 암반의 수리역학적 안정성을 평가할 수 있는 해석모델을 개발하는 데에 그 목적이 있다. 본 연구에서는 TOUGH2 수리유동모델과 FLAC3D의 역학적 인터페이스 모델의 연동을 통해 단층의 역학적 거동을 보다 합리적으로 구현할 수 있는 해석기법을 제안하고, 벤치마크 해석과 스위스 Mont Terri 지하연구시설 현장시험에 적용하여 그 타당성과 유효성을 검증하였다. 개발된 해석 모델은 유체의 주입으로 인한 단층 내 압력 분포의 발달, 역학적 변형에 따른 수리간극의 변화, 변위와 응력 등 단층의 수리역학적 거동을 적절히 재현할 수 있는 것으로 나타났다.

Keywords

References

  1. Cappa, F., Rutqvist, J., 2011, Modeling of coupled deformation and permeability evolution during fault reactivation induced by deep underground injection of CO2, International Journal of Greenhouse Gas Control, Vol. 5, pp. 336-346. https://doi.org/10.1016/j.ijggc.2010.08.005
  2. Cladouhos, T.T., Petty, S., Larson, B., Iovenitti, J., Livesay, B., Baria, R., 2009, Toward more efficient heat mining: a planned enhanced geothermal system demonstration project. Geothermal Resources Council 33: 165-170.
  3. Ghabezloo, S., Sulem, J., 2009, Stress dependent thermal pressurization of a fluid-saturated rock. Rock Mechanics and Rock Engineering 42:1-24. https://doi.org/10.1007/s00603-008-0165-z
  4. Graupner, B., Rutqvist, J., Guglielmi, Y., 2020, DECOVALEX-2019 Task B Final Report. Lawrence Berkeley National Laboratory, LBNL-2001263d.
  5. Guglielmi, Y., Birkholzer, J., Rutqvist, J., Jeanne, P., Nussbaum, C., 2017, Can Fault Leakage Occur Before or Without Reactivation? Results from an In Situ fault reactivation expriement at Mont Terri, Energy Procedia 114, 3167-3174. https://doi.org/10.1016/j.egypro.2017.03.1445
  6. Guglielmi, Y., Cappa, F., Avouac, J.-P., Henry, P., Elsworth, D., 2015, Seismicity triggered by fluid injection-induced aseismic slip, Science 348.
  7. Guglielmi, Y., Cappa, F., Lancon, H., Janowczyk, J., Rutqvist, J., Tsang, C.-F., Wang, J. S. Y., 2014, ISRM suggested method for Step-Rate Injection Method for Fracture In-Situ Properties (SIMFIP): Using a 3-components borehole deformation sensor. Rock Mechanics and Rock Engineering 47: 303-311. https://doi.org/10.1007/s00603-013-0517-1
  8. Jaeger, J.C., Cook, N.G.W., Zimmerman, R.W., 2007, Fundamentals in Rock Mechanics. fourth ed. Oxford: Blackwell publishing.
  9. Martin, C.D, Lanyon, G.W., 2003, Measurement of in-situ stress in weak rocks at Mont Terri Rock Laboratory, Switzerland, International Journal of Rock Mechanics & Mining Sciences 40: 1077-1088. https://doi.org/10.1016/S1365-1609(03)00113-8
  10. Park, J.W., Kim, T., Park, E.S., Lee, C., 2018a, Coupled hydro-mechanical modelling of fault reactivation induced by water injection: DECOVALEX-2019 Task B (Benchmark model test), Tunnel & Underground Space 28(6): 670-691. https://doi.org/10.7474/TUS.2018.28.6.670
  11. Park, J.W., Park, E.S., Kim, T., Lee, C., Lee, J., 2018b, Hydro-mechanical modelling of fault slip induced by water injection: DECOVALEX-2019 Task B (Step 1), Tunnel & Underground Space 28(5): 400-425. https://doi.org/10.7474/TUS.2018.28.5.400
  12. Park, J.W., Guglielmi, Y., Graupner, B., Rutqvist, J., Kim, T., Park, E.S., Lee, C., 2020, Modeling of fluid injection-induced fault reactivation using coupled fluid flow and mechanical interface model. International Journal of Rock Mechanics and Mining Sciences 132: 104373. https://doi.org/10.1016/j.ijrmms.2020.104373
  13. Park. J.W., Guglielmi, Y., Graupner, B., Rutqvist, J., Park, E., 2019, Numerical modelling of Fault Reactivation Experiment at Mont Terri Underground Research Laboratory in Switzerland: DECOVALEX-2019 TASK B (Step 2), Tunnel & Underground Space 29(3): 197-213. https://doi.org/10.7474/TUS.2019.29.3.197
  14. Rinaldi, A.P., Rutqvist, J., 2019, Joint opening or hydroshearing? Analyzing a fracture zone stimulation at Fenton Hill, Geothermics 77: 83-98. https://doi.org/10.1016/j.geothermics.2018.08.006
  15. Rinaldi, A.P., Rutqvist, J., Cappa, F., 2014, Geomechanical effects on CO2 leakage through fault zones during large-scale underground injection. International Journal of Greenhouse Gas Control 20: 117-131. https://doi.org/10.1016/j.ijggc.2013.11.001
  16. Rutqvist, J., Birkholzer, J., Cappa, F., Tsang, C.-F., 2007, Estimating maximum sustainable injection pressure during sequestration of CO2 using coupled fluid flow and geomechanical fault-slip analysis, Energy Conversion and Management 48(6):1798-1807. https://doi.org/10.1016/j.enconman.2007.01.021
  17. Rutqvist, J., Dobson, P.F., Garcia, J., Hartline, C., Jeanne, P., Oldenburg, C.M., Vasco, D.W., Walters, M., 2015, The northwest Geysers EGS demonstration project, California: Pre-stimulation modeling and interpretation of the stimulation. Mathematical Geosciences 47(1): 3-29. https://doi.org/10.1007/s11004-013-9493-y
  18. Rutqvist, J., Wu, Y.S. Tsang, C.F., Bodvarsson, G., 2002, A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock, International Journal of Rock Mechanics and Mining Sciences 39: 429-442. https://doi.org/10.1016/S1365-1609(02)00022-9
  19. Witherspoon, P.A., Wang, J.S.Y., Iwai, K., Gale, J.E., 1980, Validity of cubic law for fluid flow in a deformable rock fracture, Water Resources Research 16: 1016-1024. https://doi.org/10.1029/WR016i006p01016
  20. Yong, S., Kaiser, P.K., Loew, S., 2010, Influence of tectonic shears on tunnel-induced fracturing, International Journal of Rock Mechanics & Mining Sciences 47: 894-907. https://doi.org/10.1016/j.ijrmms.2010.05.009