• Title/Summary/Keyword: Hydrazine hydrate

Search Result 66, Processing Time 0.021 seconds

Bezoin in Heterocyle Synthesis: Synthesis and Reactions of 2, 3-Diphenyl-4-cyanopyrrole-5-thione

  • Khalifa, Fathy A.;Zohdi, Hussein F.;Ibrahim, M.K.A.;Ismail, N.A.
    • Archives of Pharmacal Research
    • /
    • v.13 no.4
    • /
    • pp.351-354
    • /
    • 1990
  • 2, 3-diphenyl-4-cyano-pyrrole-5-thione (4) was either by the reaction of benzoin (1) and cyanothioacetamide (3) followed by cyclization using AcOH/sodium acetate or by refluxing a mixture of benzoin (1) and cyanothioacethamide in pyridine to afford directly 4. Several new pyrrole and pyrazole derivatives were synthesised using 4 as synthon. The structure of the newly synthesised derivatives were based on celemental and spectral data studies. Methylation of the SH group in 4 afforded 5. Reaction of 4 with ethyl bromo acetate afforded (6). Treatment of (5) and (6) with hydrazine hydrate afforded the same pyrazole derivative (10) through the intermediate (9). Treatment of 6 with aniline and phenylhydrazine afforded the pyrrole derivatives 8a, b respectively. Treatment of 6 while dill HCI gave 2, 3-diphenyl-4-cyano-pyrrole-5-one (7). Treatment of 6 with $NH_3$/EtOH afforded the amidic derivatives (11) with treatment of 6 $NH_3$/ heat then acidification it gave the carboxylic derivatives (12).

  • PDF

Synthesis of Tetrazolo[1,5-a]quinoxaline based Azetidinones & Thiazolidinones as Potent Antibacterial & Antifungal Agents

  • Kumar, Shiv;Khan, S.A.;Alam, Ozair;Azim, Rizwan;Khurana, Atul;Shaquiquzzaman, M.;Siddiqui, Nadeem;Ahsan, Waquar
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2260-2266
    • /
    • 2011
  • 4-Chlorotetrazolo[1,5-a]quinoxaline (III) was synthesized by azide (2+3) cycloaddition of 2,3-dichloroquinoxaline (II). Compound (III) on further refluxing with hydrazine hydrate furnished 4-hydrazinotetrazolo[1,5-a]quinoxaline (IV). Further refluxing of (IV) with different aromatic aldehydes in methanol yielded corresponding Schiff's bases V(a-j). Various 4-aminotetrazolo[1,5-a]quinoxaline based azetidinones VII(a-j) were synthesized by stirring the compounds V(a-j), at low temperature, with equimolar mixture of chloroacetylchloride & triethylamine in dry benzene, while 4-aminotetrazolo[1,5-a]quinoxaline based thiazolidinones VIII(a-j) were synthesized by refluxing Schiff's bases V(a-j) with thioglycolic acid in oil-bath. The structures of all the compounds were confirmed on the basis of $^1H$-NMR & FT-IR spectral data. All the newly synthesized compounds were screened for in-vitro antimicrobial activity against E. coli, S. aureus, K. pneumoniae & P. aeruginosa & antifungal activity against C. albicans. Few of them have exhibited the promising activity.

Preparation of Submicron Nickel Powders with Non-aqueous Solvent In Microwave-Assisted Reduction Method (비수계 용매를 사용하는 마이크로파 환원법에 의한 서브마이크론 니켈 분말의 합성)

  • Jeon, Seung Yup;Kim, Jae-Hwan;Park, Na Yi;Park, Hoy Yul;Lee, Gun-Dae;Hong, Seong-Soo;Park, Seong Soo
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.320-325
    • /
    • 2007
  • Nickel powders were prepared from an aqueous nickel acetate solution and hydrazine hydrate using diethanolamine as the nonaqueous organic solvent in the conventional and microwave synthetic method. It was investigated that microwave non-thermal effect and synthetic condition affect the preparation of nickel powders by means of X-ray diffractometry, scanning electron microscopy, thermal gravymetry analysis, and X-ray photoelectron spectroscopy analysis. Compared with the conventional synthetic method, less of aggregation, smaller particle size, and more uniform distribution of particle size were obtained in the microwave synthetic method due to the non-thermal effect of microwaves.

Effect of Microwave Irradiation on Exfoliation of Graphene Oxide (마이크로파 조사가 산화그래핀의 화학적 박리에 미치는 효과)

  • Lee, Jae-Hee;Hwang, Ki-Wan;Jeong, Young-Hoon;Kim, Eui-Tae
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.708-713
    • /
    • 2013
  • Graphene oxide has been synthesized by microwave-assisted exfoliation of graphite oxide prepared by modified Hummers method. Graphite was oxidized in a solution of $H_2O_2$ and $KMnO_4$ at $65{\sim}80^{\circ}C$, followed by 10 % $H_2O_2$ solution treatment at $80{\sim}90^{\circ}C$. The graphite oxide was exfoliated under microwave irradiation of 1 kW and was reduced to graphene effectively by hydrazine hydrate ($H_4N_2{\cdot}H_2O$) treatment. The exfoliation of graphene oxide was significantly affected by the microwave irradiation on (heating)/off (cooling) period. An on/off period of 10 s/20 s resulted in much more effective exfoliation than that of 5 s/10 s with the same total treatment time of 10 min. This can be explained by the higher exfoliation temperature of 10 s/20 s. Repetition of the graphite oxidation and exfoliation processes also enhanced the exfoliation of graphene oxide. The thickness of the final graphene products was estimated to be several layers. The D band peaks of the Raman spectra of the final graphene products were quite low, suggesting a high crystal quality.

Preparations of Universal, Functionalized Long-Chain Alkylthiol Linkers for Self-assembled Monolayers (자기조립단분자막을 위한 보편적이고 기능화된 긴 사슬 알킬티올 연결자의 제조)

  • Yoo, Dong-Jin;Lee, Kyong-Sub;Kim, Ae-Rhan;Nahm, Kee-Suk
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.330-337
    • /
    • 2011
  • In this research, the preparation processes for making a series of $\omega$-mercapto alkylamine 1 and $\omega$-mercapto alkanoic acid 2 useful for studying of the self-assembled monolayer(SAM) are described. The preparation methods of the first goal materials, $\omega$-mercapto alkylamines 1 were carried out as follows: First, $\omega$-phthalimide alkanol 3 was synthesized from commercially available potassium phthalimide derivatives and $\omega$-bromoalkanol in DMF at $80{^{\circ}C}$ via substitution reaction. After refluxing $\omega$-phthalimide alkanol 3 with hydrazine hydrate in ethanol followed by treating with c-HCl, $\omega$-aminoalkanol 4 was obtained in 76-98% yield, accompanied with side-product 5. Bromination of hydroxyl moiety of $\omega$-aminoalkanol 4 using aqueous hydrobromic acid furnished $\omega$-bromoamine 6 in 34-97% yields. Substitution reaction 6 with thiourea in 95% ethanol gave $\omega$-aminoalkanthiuronium 7, which was treated with aqueous strong base and aqueous strong sulfuric acid gave desired products, $\omega$-mercapto alkylamines 1 through overall 5 steps. The second target material, $\omega$-mercapto alkanoic acid 2 was prepared via 2 steps. $\omega$-bromo alkanoic acid was reacted with thiourea to give $\omega$-thiourea alkanoic acid 7 in 69-85%, which was treated with aqueous strong base and strong acid to furnish $\omega$-mercapto alkanoic acid 2 in 50-98%. The fabricated long-chain alkylthiol(LCAT) can be used as linkers to immobilize protein, enzyme and various kinds of biomolecules on the surface of metallic materials(Au, Pt, Ti) by SAM, and can be useful chemical tools for the application study on the surface modification of metallic materials.

Synthesis of Some New 4,5-dihydro-6-(4-methoxy-3-methylphenyl)-3(2H)-pyridazinone Derivatives (4,5-Dihydro-6-(4-methoxy-3-methylphenyl)-3(2H)-pyridazinone계 화합물의 합성 연구)

  • Soliman, Mohamed H. A.;El-Sakka, Sahar S.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.2
    • /
    • pp.230-234
    • /
    • 2011
  • The present study describes the synthesis of 4,5-dihydro-6-(4-methoxy-3-methylphenyl)-3(2H)-pyridazinone derivatives. The synthesis of the first target compound, 4,5-dihydro-6-(4-methoxy-3-methylphenyl)-3(2H)-pyridazinone (1), was achieved by Friedel-Crafts acylation of o-cresyl methyl ether with succinic anhydride and subsequent cyclization of the intermediary g-keto acid with hydrazine hydrate. Condensation of compound 1 with aromatic aldehydes in the presence of sodium ethoxide affords the corresponding 4-substituted benzyl pyridazinones (3a-d). The dihydropyridazinone 1 underwent dehydrogenation upon treatment with bromine/acetic acid mixture to give (4). Pyridazine (5) has been synthesized upon the reaction of pyridazinone (1) with 1,3-diphenyl-2-propen-1-one under the Michael addition reaction. N-dialkylaminomethyl derivatives 6a-b have been obtained from the reaction of pyridazinone 1 with formaldehyde and secondary amine, whereas reaction of 1 with formaldehyde gives N-hydroxymethyl derivative (7). This study also includes the synthesis of the 3-chloropyridazine derivative 8 in excellent yield by heating pyridazinone 3b in phosphorus oxychloride. The behaviour of the chloro derivative toward sodium azide, benzyl amine and anthranilic acid was also studied. The proposed structures of the products were confirmed by elemental analysis, spectral data and chemical evidence.