Benzoin in Heterocyclic Synthesis: Synthesis and Reactions of 2,3-Diphenyl-4-cyanopyrrole-5-thione

Fathy A. Khalifa[§], Hussein F. Zohdi, M.K.A. Ibrahim and N.A. Ismail*

*Department of Chemistry, Faculty of Science, Cairo University, Giza, Egypt

*Department of Chemistry, Faculty of Science, Zagazig University, Egypt

(Received October 17, 1990)

Abstract □2,3-Diphenyl-4-cyano-pyrrole-5-thione (4) was prepared either by the reaction of benzoin (1) and cyanothioacetamide (3) followed by cyclization using AcOH/sodium acetate or by refluxing a mixture of benzoin (1) and cyanothioacetamide in pyridine to afford directly 4. Several new pyrrole and pyrazole derivatives were synthesised using 4 as synthon. The structure of the newly synthesised derivatives were based on celemental and spectral data studies. Methylation of the SH group in 4 afforded 5. Reaction of 4 with ethyl bromo acetate afforded (6). Treatment of (5) and (6) with hydrazine hydrate afforded the same pyrazole derivative (10) through the intermediate (9). Treatment of 6 with aniline and phenylhydrazine afforded the pyrrole derivatives 8a,b respectively. Treatment of 6 while dil HCl gave 2,3-diphenyl-4-cyano-pyrrole-5-one (7). Treatment of 6 with NH₃/EtOH afforded the amidic derivatives (11) with treatment of 6 with NH₃/heat then acidification it gave the carboxylic derivatives (12).

Keywords □ 2,3-Diphenyl-4-cyanopyrrole-5-thione, benzoin, cyanothioacetamide.

The reported biological activities¹⁻³⁾ of pyrrole and its derivatives stimulated our interest for the synthesis of new heterocyclic derivatives of this ring system. As a part of our program⁴⁻⁸⁾ directed for synthesis of some heterocyclic compounds with considerable biological and medicinal activity. We reported, here, a novel synthesis of some pyrrole derivatives and their substitution reactions.

Thus, it has been found that benzoin 1 reacted with cyanothioacetamide 2 in absolute ethanol in the presence of catalytic amount of piperidine, to afford the intermediate 3 which could be cyclized using acetic acid and sodium acetate to afford 2,3-diphenyl-4-cyano-pyrrole-5-thione 4. The same compound 4 could also be obtained directly when 1 and 2 were heated under reflux in pyridine. The structure of 4 is confirmed by elemental analysis, IR and 'H-NMR spectral data (Tables I and II). Thus, the IR (cm⁻¹) spectrum of 4 showed absorption bands at 3400, 3320 and 3100 for NH group in addition to 2200 (CN) group. 1H NMR (& ppm) of 4 revealed signals at 8.60 (s. 1H, NH); and at 7.63, 7.90 (m, 10H, Arom.H). Treatment of 4 with methyl iodide in sodium ethoxide afforded 2,3-diphenyl-4-cyano-5-S-methylpyrrole 5. The structure of 5 was confirmed by elemental analysis, IR and 1H-NMR spectral data (Tables I and

On the other hand treatment of 4 with ethyl bromoacetate in the presence of sodium ethoxide gave 2,3-diphenyl-4-cyano-5-(ethoxycarbonylmethylthio) pyrrole 6. The IR (cm⁻¹) spectrum of 6, showed the ester carbonyl band at 1740 and the cyano group at 2220. The ¹H-NMR (δ ppm) of 6 revealed signals at 1.31 (t, 3H, CH₃), 3.8 (s, 2H, 5CH₂), 4.3 (q, 2H, CH₂), 4.5 (s. 1H, CH), 7.4-6.8 (m, 10H, Arom. H) (Tables I and II). Refluxing of 4 with dil-HCl yielded 2,3-diphenyl-4-cyano-pyrrole-5-one 7. The IR (cm⁻¹) spectrum of 7 show a peak of NH at 3340, 3300, 3120 (CN) group at 2220 and ring carbonyl peaks at 1690. Moreover, treatment of 5 and 6, with hydrazine hydrate in absolute ethanol gave one and the same product 4,5-diphenylpyrrolo[2,3-c]-3-aminopyrazolene 10 which obtained through the nonisolable intermediate 9. The structure of 10 was confirmed by elemental analysis, IR and 1H-NMR (Tables I and II). The IR (cm⁻¹) spectrum of 10 showed appearance of a peak at 3350, 3240, 3180 characteristic for NH₂ group. ¹H-NMR (& ppm) of 10 revealed signals at 7.61, 7.91 (m, 10H, Arom.H) and 10.1 (s, 2H, disappear after D₂O exchange, NH₂). Compound 10 showed no signals for NH group. Treatment of 6 with excess ammonia in absolute ethanol at 0°C produced 2,3-diphenyl-4-cyano-6-(carboxyamidomehylthio) pyrrole 11. The IR (cm⁻¹) spectrum of 11

^{11).}

[§] To whom all correspondence should be addressed.

Table I. List of compounds 3, 4, 5, 6, 7, 8a, 8b, 10, 11 and 12

Compound	Solvent of Crystallization	Colour	M.p. °C	Yield (%)	Mol. Formula	Analysis % Calc./Found			
						С	Н	N	S
3	ethanol	pale yellow	120	85	C ₁₇ H ₁₄ N ₂ SO	69.4 69.1	4.8 4.4	9.5 9.4	10.9 10.7
4	ethanol	brown	>300	73	$C_{17}H_{12}N_2S$	73.9 74.0	4.3 4.1	10.1 10.0	11.6 11.8
5	ethanol	yellow	188	70	$C_{18}H_{14}N_2S$	75.2 75.0	3.8 3.5	9.6 9.4	11.1 11.0
6	ethanol	white	210	75	$\mathrm{C_{21}H_{18}N_2SO_2}$	69.6 69.4	4.9 5.0	7.7 7.9	8.8 8.5
7	ethanol	white	244	82	$C_{17}H_{12}N_2O$	78.5 78.4	4.6 4.6	10.7 10.9	- -
8a	ethanol	yellow	185	81	$C_{23}H_{17}N_3$	82.4 82.0	5.1 5.0	12.5 12.3	_
8b	ethanol	yellow	195	75	$C_{23}H_{18}N_4$	78.9 78.6	5.1 5.1	15.9 16.0	- -
10	ethanol	brown	250	65	$C_{17}H_{12}N_4$	74.9 74.7	4.4 4.2	20.6 20.5	-
11	ethanol	yellow	254	74	$C_{19}H_{15}N_3OS$	68.5 68.7	4.5 4.4	12.6 12.5	9.7 10.0
12	ethanol	yellow	265	87	$C_{19}H_{14}N_2O_2S$	68.2 67.0	4.2 4.0	8.4 8.1	9.6 10.0

Table II. IR and $^1\text{H-NMR}$ data of compounds 3, 4, 5, 6, 7, 8a, 8b, 10, 11, and 12

Compound	IR (KBr) cm ⁻¹	¹ H-NMR (δppm)
3	3340,3280, 3120 (NH ₂); 2220 (CN), 1540 (C=S)	4.50 (s, 1H, CH); 8.51 (s, br, OH); 7.61-7.90 (m, 10H, Arom); 9.30(s, br, 2H, NH ₂)
4	3400, 3320, 3100 (NH), 2220 (CN)	4.50 (s, 1H, CH); 7.63-7.90 (m, 10H, Arom.); 8.60 (s, 1H, NH)
5	2220 (CN)	2.51 (s, 3H, 5CH ₃); 4.51 (s, 1H, CH); 7.10-7.70 (m, 10H, Arom.)
6	2220 (CN), 1740 (CO)	1.31 (t, 3H, CH ₃); 3.80 (s, 2H, 5CH ₂); 4.30 (q, 2H, CH ₂); 6.80-7.40 (m, 10H, Arom.)
7	3340, 3300, 3120 (NH), 1670 (CO).	4.50 (s, 1H, CH); 7.61-7.91 (m, 10H, Arom.); 8.80 (s, 1H, NH)
8a	3500, 3250, 3120 (NH), 2220 (CN)	4.50 (s, 1H, CH); 7.60-7.90 (m, 15H, Arom.); 9.58 (s, 1H, NH)
8b	3450, 3300, 3120 (NH), 2220 (CN)	
10	3350, 3240, 3180 (NH ₂)	7.61-7.91 (m, 10H, Arom.), 10.1 (s, br, 2H, NH ₂)
11	3350, 3240, 3180 (NH ₂); 2220 (CN), 1685 (CO).	3.8 (s, 2H, 5CH ₂); 4.50 (s, 1H, CH); 6.50 (s, br, 2H, NH ₂); 7.10-7.70 (m, 10H, Arom. H)
12	2220 (CN), 1720 (COOH)	3.7 (s, 2H, 5CH ₂); 4.50 (s, 1H, CH); 7.10-7.60 (m, 10H, Arom.); 11.3 (s, 1H, COOH)

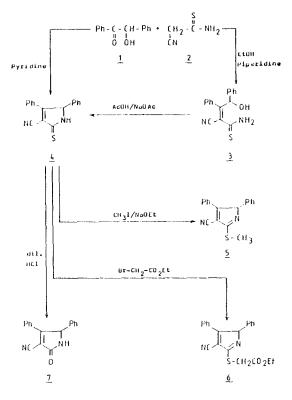


Chart 1

showed the appearance of (C = O) band at 1685, (NH₂)band at 3350, 3240, 3180 and (CN) band at 2220. 1H-NMR (δ ppm) of 1 revealed signals at 3.80 (s, 2H, $5CH_2$) 6.50 (s, br, 2H, NH₂) and $6.80 \sim 7.30$ (m, 10H Arom. H) (Tables I and II). Boiling of 6 with hot ammonia then acidification afforded directly the corresponding 2,3-diphenyl-4-cyano-5-(hydroxycarbonylmethylthio) pyrrole 12. The structure of 12 was confirmed by elemental analysis, IR and 1H-NMR spectra (Tables I and II). Where 1H-NMR (& ppm) showed a signal at 11.3 (s. 1H, COOH). Treatment of 6 with aniline or phenylhydrazine in absolute ethanol afforded 2,3-diphenyl-4-cyano-5-anilinopyrrole 8a and 2,3-diphenyl-4-cyano-5-phenylhydrazino pyrrole 8b respectively. The structure of 8a and b were confirmed based on elemental analysis, IR and 1H-NMR (Tables I and II).

EXPERIMENTAL

All melting point are uncorrected. IR spectra (KBr) were recorded on a Pye-Unicam SP-1100 spectrophotometer. ¹H-NMR spectra were recorded on a Varian EM-390 90 MHz spectrometer in DMSO-d₆ using

TMS as internal standard and chemical shifts are expressed as (3 ppm) units. Elementary analyses were performed at the Microanalytical Centre of Cairo University.

Preparation of 2,3-diphenyl-4-cyano-5-thione (4) Route (a): A mixture of benzoin (0.01 mol) and cyanthioacetamide 2 (0.01 mol) pyridine (50 ml) was heated under reflux for 5 h. The solution was cooled and poured onto ice-water. The solid separated after acidification was collected, washed with $\rm H_2O$, dried and then crystallized from ethanol to give 4 as brown powder with mp. > 300°C (Table I).

Route (b): i) A mixture of benzoin 1 (0.01 mol) and cyanothioacetamide 2(0.01 mol) in ethanol (30 ml) in the presence of piperidine (0.5 ml) was heated under reflux for 3 h. The solid obtained after cooling and pouring onto ice-water crystallized from ethanol to give 2 as pale yellow crystals with mp. 120°C.

ii) A mixture of 3 and glacial acetic acid (20 m/) was heated under reflux for 2 h then cooled and poured onto ice-water. The solid obtained was crystallized from ethanol to give 4 as brown crystals with m.p. > 300°C.

Preparation of 2,3-diphenyl-4-cyano-(6-methyl-thio)pyrrole 5 and 3,4-diphenyl-5-cyano-6-(eth-

oxycarbonylmethylthio)pyrrole 6

General procedure: A mixture of methyl iodide, ethylbromoacetate (0.01 mol) was added dropwise to a stirred solution of sodium ethoxide (0.01 atom of sodium metal in 100 m/ ethanol) and 4 (0.01 mol). After refluxing the reaction mixture for 2 h and cooling, the solid separated was filtered off and recrystallized from ethanol to give 5 and 6 respectively (Table I).

Reaction of 5 and 6 with hydrazine hydrate

A mixture of **5** or **6** (0.01 mol) and hydrazine hydrate (0.01 mol) in glacial acetic acid (60 m*l*) was heated under reflux for 5 h. The reaction mixture was cooled and poured onto water. The solid separated was collected and crystallized from ethanol to give **10** (Table I).

Preparation of 2,3-diphenyl-4-cyano-5-anilino pyrrole 8a and 2,3-diphenyl-4-cyano-5-phenylhydrazino pyrrole 8b

A mixture of 6 (0.01 mol) and aniline or phenylhydrazine (0.01 mol) in absolute ethanol (30 m/) was heated under reflux for 2 h. The solid separated on cooling was heated under reflux for 2 h. The solid separated on cooling was filtered and recrystallized from ethanol to give 8a and b respectively (Table I).

Preparation of 2,3-diphenyl-4-cyano-5-(carboxy-amidomethylthio)pyrrole 11

A solution of 6 (0.01 mol) in absolute ethanol (30 ml) and excess ammonia solution (28%) was cooled to 0°C for 48 h. The solid separated was

filtered off and crystallized from ethanol to give 10 as yellow crystals (Table I).

Preparation of 2,3-diphenyl-4-cyanopyrrole-6one 7

A solution of 4 (1g) in dilute HCl (30 m/) was heated under reflux for 2 h than cooled. The solid obtained was crystallized from ethanol to give 7 (Table II).

Preparation of 2,3-diphenyl-4-cyano-5-(hydro-xycarbonylmethylthio)pyrrole 12

A solution of 6 (1g) and aqueous ammonia solution (30 m/) was heated under reflux for 2 h and then acidified with dil-HCl. The solid obtained was filtered off and crystallized from ethanol to give 11 (Table I).

LITERATURE CITED

- 1. Leete, E. and Leets, S.A.S.: *J. Org. Chem.*, **43**, 2122 (1978).
- 2. Alan, J.R. and Marrialt, M.T.P.: *Heterocycles*, **14**, 185 (1980).
- 3. Verke, R., Dekimpe, N., Debucycle, L., Tilley, M. and Schamp, N.: *Tetrahedron*, **36**, 131 (1980).
- 4. Riad, B.Y., Khalita, F.A., Abdel Galil, F.M. and Elnagdi, M.H.: *Heterocycles*, 19, 1637 (1982).
- 5. Khalifa, F.A., Riad, B.Y. and Hafez, F.H.: Heterocycles, 20, 1021 (1983).
- Riad, B.Y., Abdelhamid, A.O. Khalifa, F.A. and Saleh, Y.E.: Arch. Pharm. Res., 12(3), 201 (1989).
- 7. Khalifa, F.A.: Arch. Pharm. Res. 1990, in press.
- 8. Khalifa, F.A.: Phosphorous and Sulfur, 1990, in press.