• Title/Summary/Keyword: Hydraulic motor

Search Result 321, Processing Time 0.046 seconds

Analysis of Performance Characteristics of Swash-Plate-Type Hydraulic Piston Motor (사판식 유압 피스톤모터의 성능특성 분석)

  • Lee, Yong-Bum;Kim, Kwang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1441-1446
    • /
    • 2012
  • An axial-piston-type hydraulic motor involves friction and leakage losses at the sliding parts, contact loss at the mechanism assembly parts, volumetric loss caused by the pressure drop, housing oil churning loss and compressibility from the hydraulic oil pipe resistance, etc. the friction and volumetric loss at the hydrostatic bearing between the piston shoe and the swash plate rotating at high speed and having an oil film gap of 8-15 ${\mu}m$ strongly affects the total efficiency of the hydraulic motor. In this study, a variable swash-plate-type hydraulic piston motor operating under a maximum pressure of 35 MPa, maximum speed of 2,500 rpm, and displacement of 320 cc/rev is tested to verify the optimal ratio of the hydrostatic bearing which is closely related to the hydraulic motor performance.

Position Sensorless Control of PMSM Drive for Electro-Hydraulic Brake Systems

  • Yoo, Seungjin;Son, Yeongrack;Ha, Jung-Ik;Park, Cheol-Gyu;You, Seung-Han
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.23-32
    • /
    • 2019
  • This study proposed a fault tolerant control algorithm for electro-hydraulic brake systems where permanent magnet synchronous motor (PMSM) drive is adopted to boost the braking pressure. To cope with motor position sensor faults in the PMSM drive, a braking pressure controller based on an open-loop speed control method for the PMSM was proposed. The magnitude of the current vector was determined from the target braking pressure, and motor rotational speed was derived from the pressure control error to build up the braking pressure. The position offset of the pump piston resulting from a leak in the hydraulic system is also compensated for using the open-loop speed control by moving the piston backward until it is blocked at the end of stroke position. The performance and stability of the proposed controller were experimentally verified. According to the results, the control algorithm can be utilized as an effective means of degraded control for electro-hydraulic brake systems in the case that a motor position sensor fault occurs.

A Study on the Dynamic Characteristics of AGV driving device (Auto Guide Vehicle) (AGV 구동부의 동특성 해석)

  • 허형석;서용권
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2002.03a
    • /
    • pp.235-239
    • /
    • 2002
  • In this study, a AGV(Auto Guide Vehicle) is presented and the dynamic characteristics of AGV driving device is investigated. The design factors of hydraulic pump and motor is an important component for it's performance characteristics. the dynamic characteristics of hydraulic pump and motor is simulated by using commercial code AMESim. Simulation results show that each behavior can be predicted with changing the various parameters.

  • PDF

An analysis on power regeneration of hydrostatic pressure exchanger (정수압방식 동력회수장치의 구동동력 절감량 해석)

  • Ham, Y.B.;Choi, J.H.;Jeong, H.S.;Park, S.J.;Park, J.H.;Yun, S.N.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.4 no.3
    • /
    • pp.7-12
    • /
    • 2007
  • This paper presents an energy saving hydrostatic pressure exchanger for sea water desalination equipment. In a reverse osmosis(RO) system for desalinating sea water, more than 70 percent of the supplied sea water, brines which were impassable through RO membrane are bypassed, resulting in high energy losses. In this paper, a hydrostatic pressure exchanger consisting of an embedded water hydraulic piston motor and a water hydraulic piston pump was proposed and investigated in order to recover the energy of the bypassed brines. The pressurized brines are supplied to the embedded water hydraulic piston motor as power sources and the water hydraulic piston pump is driven by the output torque of the embedded water hydraulic piston motor as well as electric motor. Consequently, the energy of the bypassed brines can be recovered. To examine the electric energy saving characteristics of the hydrostatic pressure exchanger, a simulation model was constructed using commercial software and experiments were conducted. Through the results of simulation and experiment, the feasibility of the electric energy saving effect of the proposed hydrostatic pressure exchanger was investigated.

  • PDF

Analysis of the Friction Characteristics of Parking Brake for Large Size Excavator (대형 굴삭기용 주차 브레이크의 마찰 특성 분석)

  • Lee, Y.B.;Kim, K.M.
    • Journal of Power System Engineering
    • /
    • v.16 no.2
    • /
    • pp.5-10
    • /
    • 2012
  • The parking brake is one of the essential units embedded in track driving motor for forward and backward motion of an excavator. It is composed of multi-friction discs. When the hydraulic motor stops, the multi-friction discs closely stick to the facing discs by acting of multi-spring forces. So, the friction forces generate the braking force by compressing the cylinder barrel of hydraulic motor. In this study, we combined the multi-friction discs to two kinds of spring which have different spring force, and the maximum torque measured at the rotational starting point of hydraulic motor through gradually increasing the rotational torque of load side hydraulic motor by use of 1 and 2 sheets of friction plates. And, under this experimental condition, the maximum coefficient of static friction and the characteristics of paper friction sheet were analyzed. The obtained experimental results will be applied to the design of parking brake system for producing large size excavator in the 85-ton weight class.

3D CAD Modeling of a Hydraulic Motor-Load System and Adaptive Control (유압모터-부하계의 3D CAD 모델링 및 적응제어)

  • Cho, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.8 no.2
    • /
    • pp.23-28
    • /
    • 2011
  • This paper investigates the motion control of a hydraulic motor-load system using the Simple Adaptive Control (SAC) method. The plant transfer function has been modelled mathematically. The open-loop responses have been obtained experimentally in order to identify the design parameters of transfer function. The hydraulic motor-load system has been modelled using the 3D CAD and imbedded in the hydraulic circuit simulation program to verify the overall performance. The experimental results confirm that the SAC method gives a good tracking performance compared to the PID control.

A Kinematic Analysis on the Connecting Rod Mechanism in Swash-plate-type Hydraulic Axial Piston Motor (사판식 유압 피스톤 모터 커넥팅 로드 기구의 운동해석)

  • 하정훈;김경호;함영복;김성동
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.621-625
    • /
    • 1997
  • Recently, wash plate type hydraulic axial piston motors are being in extensively used in the world, because of simple design, lightweight, effective cost. But the structural problem of swash plate type hydraulic axial piston motor is the limited angle of swash plate and lateral force having a undesirable effect in piston. To solve these problems. a connecting rod mechanism. which is commonly used in hent axis type motors, is considered to be applied the swash plate cype motor. In this paper, kinematic analysis is done on the connecting rod mechanism. A series of formula are derived and numerical calculations are done for a set of motor parameters.

  • PDF

A Study on Cycle Time and Power Saving Effect of a Hydraulic Hybrid Injection Molding Machine using a Servo Motor (서보모터를 이용한 유압 하이브리드식 사출성형기의 공정시간 및 절전효과에 관한 연구)

  • Yun, Hongsik;Kim, Sungdong
    • Journal of Drive and Control
    • /
    • v.17 no.3
    • /
    • pp.15-25
    • /
    • 2020
  • The cycle time and power saving effect of a hydraulic hybrid injection molding machine using a servo motor are considered in this paper. In order to verify control characteristics, such as pressure and speed, experiments were performed with the hydraulic hybrid injection molding machine, clamping force of 110 ton. The power consumption and production cycle time of a conventional hydraulic injection molding machine were measured to compare its performances with the hydraulic hybrid injection molding machine. An injection molding machine with a clamping force of 1300 ton was used as the conventional machine, the hybrid machine was implemented by replacing its induction motors with servo motors. In the remodeled hybrid machine, experiments were performed to investigate how the displacement of the mold clamping pump affects the power consumption and production cycle time. The results showed that the production cycle time of the hybrid injection molding is similar to a conventional hydraulic injection molding machine but with a significant energy saving of about 40%.

Pressure Ripple Reduction in High Speed On-Off Solenoid Valves Driven by PWM Control (PWM 제어 고속 온-오프 전자밸브에서 발생하는 압력맥동 저감)

  • Kim D.T.;Lee S.K.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.2 no.2
    • /
    • pp.8-13
    • /
    • 2005
  • This paper investigates a fast, accurate and inexpensive hydraulic motor speed control system using high speed on-off solenoid valves. In order to retain the advantages of the two position valve and obtain better performance, the valves are operated by pulse width modulation(PWM) control. PWM signal is generated from a LabWIEW program in microcomputer in order to set up various duty ratio and frequency of carrier wave in PWM signal with varying system parameters. As the results of experiments, the speed control of a hydraulic motor was successfully implemented using on-off solenoid valves. In order to attenuate the pressure ripple and speed variation due to discontinuously controlled flow through the on-off valves, a resonator hose fabricated for automobile power steering system was connected between the valve and a hydraulic motor. From experimental results obtained in the hydraulic motor system with a resonator hose, it was ascertained that the resonator hose showed excellent performances in reducing pressure ripple and motor speed variation.

  • PDF

An Analysis on Volumetric Displacement of Hydraulic Gerotor Pump/Motor using Energy and Torque Equilibrium - First Report: Case of Rotation of Inner and outer Rotors - (에너지보존과 토크평형을 이용한 제로터 유압 펌프/모터의 배제용적 해석 - 내·외부로터 회전 경우 -)

  • Kim, S.D.;Kim, D.M.;Ham, Y.B.
    • Journal of Drive and Control
    • /
    • v.10 no.2
    • /
    • pp.13-22
    • /
    • 2013
  • It is difficult to analytically derive a volumetric displacement formula of gerotor hydraulic pump/motor because geometric shape of rotors is complicated. An analytical method about the volumetric displacement is proposed in this work, which is relatively easy and based upon two physical concepts. The first one is energy conservation between hydraulic energy of the pump/motor and mechanical input/output energy. The second concept is torque equilibrium with respect to inner and outer rotors. The formula about the volumetric displacement is derived for the common case of inner and outer rotors rotate with respect to fixed axes. The formula is verified by comparing another analytical displacement formula, and it is numerically verified by comparing numerical results, which is calculated for geometric specification of a motor. The numerical displacement is calculated through CAD software program and MATLAB program. The proposed analytical formula can be utilized in analysis and design of hydraulic gerotor motors.