• Title/Summary/Keyword: Hydraulic Stability

검색결과 569건 처리시간 0.028초

수리모형시험을 통한 다단식 지오텍스타일 튜브의 수리동역학적 거동분석 (Hydrodynamic Behavior Analysis of Stacked Geotextile Tube by Hydraulic Model Tests)

  • 신은철;오영인;김성윤
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2002년도 가을 학술발표회 논문집
    • /
    • pp.705-712
    • /
    • 2002
  • Geotextile tube is environmentally sustainable technology and has been applied in hydraulic and coastal engineering applications. Geotextile tube is composed in permeable fabrics and Inside dredged materials, and hydraulically or mechanically filled with dredged materials. These tube are generally about 1.0m to 2.0m in diameter, through they can be sized for any application. The tubes can be used solely, or stacked to add greater height and usability. Stacked geotextile tubes will create by adding the height necessary for some breakwaters and embankment, therefore increasing the usability of geotextile tubes. This paper presents the hydrodynamic behavior of stacked geotextile tube by hydraulic model tests. The hydraulic model test conducted by structural condition and wave conditions. Structural condition is installation direction to the wave(perpendicular band 45$^{\circ}$), and wave condition is varied with the significant wave height ranging from 3.0m to 6.0m. Based on the test results, the hydrodynamic behaviors such as structural stability, wave control capacity, and strain are interpreted.

  • PDF

선박용 유압 조타 시스템의 구조적 안전성 평가 (Structural Safety Evaluation of Hydraulic Steering System for Ship)

  • 이문희;손인수;양창근
    • 한국산업융합학회 논문집
    • /
    • 제23권4_2호
    • /
    • pp.661-667
    • /
    • 2020
  • The optimal shape modeling of core parts through 3D modeling and structural analysis for the development of small and medium-sized ships. The goal is to improve the efficient structure of the hydraulic system for controlling the rudder among the core steering parts in small and medium-sized ships. Through 3D modeling and structural analysis, a new concept of tiller parts and a double-acting hydraulic cylinder control system were proposed and operational structural stability was evaluated. Structural analysis of the three different tiller designs that can be replaceable onto existing fishing vessels was conducted to derive the final shapes. The emphasis was placed on evaluating the structural stability of the key drive components, the tiller, pin, and cylinder rodin the maximum torque condition of the hydraulic cylinder.

전자비례감압밸브를 이용한 가변용량형 유압펌프의 다기능 제어 (Multi-function Control of Hydraulic Variable Displacement Pump with EPPR Valve)

  • 정동수;김형의;강이석
    • 한국자동차공학회논문집
    • /
    • 제14권6호
    • /
    • pp.160-170
    • /
    • 2006
  • If hydraulic pump controlled by mechanical type regulator has more than one control function, the construction of regulator will be very complicated and control performance falls drastically. It is difficult to have more than one control function for hydraulic pump controlled by electronic type hydraulic valve due to the inconsistency of controllers. This paper proposes a multi-function control technique which controls continuously flow, pressure and power by using EPPR(Electronic Proportional Pressure Reducing) valve in swash plate type axial piston pump. Nonlinear mathematical model is developed from the continuity equation for the pressurized control volume and the torque balance for the swash plate motion. To simplify the model we make the linear state equation by differentiating the nonlinear model. A reaction spring is installed in servo cylinder to secure the stability of the control system. We analyze the stability and disturbance by using the state variable model. Finally, we review the control performances of flow, pressure and power by tests using PID controller.

Effect of variation of water retention characteristics due to leachate circulation in municipal solid waste on landfill stability

  • M. Sina Mousavi;Yuan Feng;Jongwan Eun;Boo Hyun Nam
    • Geomechanics and Engineering
    • /
    • 제33권2호
    • /
    • pp.141-154
    • /
    • 2023
  • This study investigated the effect of water retention characteristics between aged and fresh Municipal Solid Waste (MSW) on the stability of the landfill. A series of transient numerical modeling for the slope of an MSW landfill was performed considering the variation of water retention characteristics due to leachate circulation. Four different scenarios were considered in this analysis depending on how to obtain hydraulic conductivity and the aging degree of materials. Unsaturated hydraulic properties of the MSW used for the modeling were evaluated through modified hanging column tests. Different water retention properties and various landfill conditions, such as subgrade stiffness, leachate injection frequency, and gas and leachate collection system, were considered to investigate the pore water distribution and slope stability. The stability analyses related to the factor of safety showed that unsaturated properties under those varied conditions significantly impacted the slope stability, where the factor of safety decreased, ranging between 9.4 and 22%. The aged materials resulted in a higher factor of safety than fresh materials; however, after 1000 days, the factor of safety decreased by around 10.6% due to pore pressure buildup. The analysis results indicated that using fresh materials yielded higher factor of safety values. The landfill subgrade was found to have a significant impact on the factor of safety, which resulted in an average of 34% lower factor of safety in soft subgrades. The results also revealed that a failed leachate collection system (e.g., clogging) could result in landfill failure (factor of safety < 1) after around 298 days, while the leachate recirculation frequency has no critical impact on stability. In addition, the accumulation of gas pressure within the waste body resulted in factor of safety reductions as high as 24%. It is essential to consider factors related to the unsaturated hydraulic properties in designing a landfill to prevent landfill instability.

Piping현상 발생에 미치는 투수계수비와 침투유속의 영향에 대한 연구 (The Influence of K-ratio and Seepage Velocity on Piping Occurrence)

  • 허경한;장옥성
    • 한국방재학회 논문집
    • /
    • 제8권2호
    • /
    • pp.129-138
    • /
    • 2008
  • 차수성이 요구되는 제체나 댐체에 대하여 안정성을 판단하고자 할 경우 파이핑 현상발생 여부를 검토한다. 제체나 댐체는 층 다짐을 수행하면서 축조되므로 투수성은 수평방향 투수계수($k_x$)와 연직방향 투수계수($k_y$)가 서로 다른 이방성이 될 수 있다. 본 연구에서는 여러 가지 투수계수 비(k-ratio=$k_y/k_x$k)에 따른 침투해석을 수행하여 유출동수경사와 침투유속을 파악하고, 이론식에 의한 한계동수경사와 경험식에 의한 한계유속과 각각 비교.검토하여 파이핑에 미치는 영향을 검토하였다. 연구결과 투수계수 비는 한계동수경사 개념으로 파이핑 현상발생에 대한 안정성을 검토할 경우 매우 중요한 요소로 작용하나, 한계유속 개념에 대해서는 상대적으로 중요도가 매우 낮은 것으로 확인되었다.

패조류용 어초의 안정성에 관한 실험적 연구 (An Experimental Study on the Stability of Artificial Reefs for Shellfish and Seaweed)

  • 손병규
    • 한국해양공학회지
    • /
    • 제21권6호
    • /
    • pp.120-124
    • /
    • 2007
  • The purpose of this study was to investigate the stability of the arched and fan types of artificial reefs, which provide habitats for shellfish and seaweed. According to the Froude similitude, parameters affecting the stability of the artificial reefs were analytically, experimentally studied. First, the design parameters of the artificial reefs in wave and current fields were presented. Then, using dimensionless parameters, such as the surf similarity parameter and water particle speed, the stability of the arched and fan types of artificial reefs was investigated. From the hydraulic experiments, it is shown that the stability heavily depends on the way the artificial reefs are installed. Therefore, the installation of the artificial reefs on the surf zone should be carefully executed.

$DGKF/\mu$ 기법을 이용한 인버터구동 유압 엘리베이터의 강인한 속도 제어 (Robust Velocity Control for Inverter-Driven Hydraulic Elevators Using $DGKF/\mu$ Approach)

  • 강기호;김경서
    • 제어로봇시스템학회논문지
    • /
    • 제6권2호
    • /
    • pp.217-227
    • /
    • 2000
  • Although inverter-driven hydraulic elevators(HEL's) have advantages over traditional valve-controlled HEL's energy efficiency and performance they need robustness in performance and stability to accomodate nonlinearities big parametric variations and resonances in mechanical-hydraulic inner system. In this paper a robust controller based on DGKF/$\mu$ mixed approach is applied to a HEL system with carring capacity of 24 persons for Incheon International Airport. The results of a test tower(T/T) has shown good ro-bustness in performance and stability of the proposed controller thereby proving a feasibility of this robust controller-based approach for other HEL problems.

  • PDF

DGKF/μ 기법을 이용한 인버터구동 유압 엘리베이터의 강인한 속도 제어 (Robust Velocity Control for Inverter-Driven Hydraulic Elevators Using DGKF/μ Approach)

  • 강기호;김경서
    • 제어로봇시스템학회논문지
    • /
    • 제6권2호
    • /
    • pp.271-271
    • /
    • 2000
  • Although inverter-driven hydraulic elevators(HEL's) have advantages over traditional valve-controlled HEL's energy efficiency and performance they need robustness in performance and stability to accomodate nonlinearities big parametric variations and resonances in mechanical-hydraulic inner system. In this paper a robust controller based on DGKF/μ mixed approach is applied to a HEL system with carring capacity of 24 persons for Incheon International Airport. The results of a test tower(T/T) has shown good ro-bustness in performance and stability of the proposed controller thereby proving a feasibility of this robust controller-based approach for other HEL problems.

Flow-3D를 활용한 수질정화체가 설치된 농업용 배수로의 안정성 조사 (Investigation of the Hydraulic Stability of Agricultural Drainage Channels Installed Water Purification Materials by using Flow-3D)

  • 김선주;박기춘
    • 한국농공학회논문집
    • /
    • 제49권5호
    • /
    • pp.3-9
    • /
    • 2007
  • In this study, the effect of the purification materials is analyzed and tested by Flow 3D and Hydraulic model test. Three dimension numerical analysis led from the research that sees abnormal form and the size back of the water purification material conferred the flowing water conduct inside the test channel against the test condition. Comparison it analyzed the flux distribution, a water depth of the channel which establishes the water purification materials the cross section, an interval of the water purification material, a conference with general channel, it change executed. As a result, the cross section ratio of the purification materials against and a flux change from the test which it sees. The interval of the purification materials in order to prevent three dimension that follows in decrease of increase and flux must decide an interval.

차량 안정성 제어용 유압 모듈레이터의 특성 해석 (Analysis of the Characteristics of ASMS Hydraulic Modulator (Automotive Stability Management System))

  • 송창섭;김형태;신상원;정태천
    • 한국정밀공학회지
    • /
    • 제18권10호
    • /
    • pp.127-133
    • /
    • 2001
  • In this study, the effect of the factors of a hydraulic modulator of ASMS was analysed. The modeling of ASMS was presented and the equation of ASMS was derived from the modeling. With this background, GUI analysis tool was developed. After the verification of the reasonability of simulation, the response of a hydraulic modulator is investigated through simulation of modeling. With this simulation, each behavior was predicted with changing the various parameters and determined the influenced factors to apply the designing process.

  • PDF