• Title/Summary/Keyword: Hydraulic Pressure Test

Search Result 483, Processing Time 0.028 seconds

DEVELOPMENT OF A CONTINUOUSLY VARIABLE-SPEED TRANSMISSION FOR AGRICULTURAL TRACTOR

  • Kim, H. J.;Kim, E. H.;K. H. Ryu
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.162-169
    • /
    • 2000
  • This study was carried out to develop a continuously variable-speed transmission(CVT) for agricultural tractor. A full-toroidal CVT mechanism with four discs and six rollers was selected as a device for changing speed ratio continuously. In the step of system layout design, the sizes of roller cylinders and end-load cylinder, which were critical factors for controlling the variator, were designed. Also the control pressure range was designed to limit the contact pressure of variator. In order to make the maximum speed of vehicle as 30km/h, the planetary gear and the six pairs of gears were designed. Also the hydraulic clutch, silent chain, hydraulic manifold and electronic controller were designed. After the design, a prototype with CVT controller was developed and tested. The speed of vehicle was changed continuously to the speed set by driver and the settling time was about 0.52 second at the step-response test (reduction ratio of variator 2.0 to 1.0), which was acceptable as a response time for working with tractor.

  • PDF

Air Similarity Performance Test of Turbopump Turbine (터보펌프용 터빈 공기상사 성능시험)

  • Lim Byeung-Jun;Hong Chang-Uk;Kim Jin-Han
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.2
    • /
    • pp.39-45
    • /
    • 2006
  • In liquid rocket engine turbopump, it is difficult to evaluate turbine performance for high pressure, high temperature circumstance. Turbine test is often done by using air at similarity condition so that the turbine can be tested at lower risk. This paper describes an air similarity test program of liquid rocket engine turbopump turbine. A test facility has been built to evaluate aerodynamic performance of turbines. The test facility consists of high pressure air supply system, mass flow rate measuring nozzle, test section, hydraulic break, exit orifice for pressure control, instrumentation and control system. This paper also presents how to decide the similarity conditions of the turbine test and describes how to control test conditions. Relative standard deviation of measurement parameter was less than 1% and measured turbine efficiency corresponded with analysis result within 2%.

Pressure Control of Staged Combustion Liquid Rocket Engine (다단연소사이클 액체 로켓엔진의 압력제어에 대한 연구)

  • Hwang, Changhwan;Lee, Kwangjin;Woo, Seongphil;Im, Ji-Hyuk;Jeon, Junsu;Lee, Jungho;Yoo, Byungil;Han, Yeoungmin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.4
    • /
    • pp.18-23
    • /
    • 2018
  • For the control of pre-burner combustion pressure, the open angle of the TTR (Throttle for Thrust Regulation) valve was varied from $143^{\circ}$ to $185^{\circ}$ while testing cold flow, ignition, and combustion. The major performance variables of rocket engines and hydraulic performance of the TTR valve regarding the open angle were verified. However, the controllability of pre-burner combustion pressure was not verified due to the limitations of the test. Comprehensive research will be done after addressing these problems.

The Study on permeability enhancement in smear zone using electro-osmotic pressure (전기 삼투압을 이용한 교란영역의 투수성 개선에 관한 연구)

  • Ahn, Byung-Wook;Noh, Hee-Jeon;Kim, Hyun-Ki;Cho, Nam-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.435-441
    • /
    • 2008
  • More time is required for consolidating soft clay when its hydraulic conductivity around the vertical drains is reduced by soil disturbance. One of the methods to be proposed to solve such problem is the electro-osmotic flow application. This study presents the experimental results of model tests using a modified oedometer and a large-scale cylinder with a sand drain. Results show that the development of negative excessive pore water pressure due to the DC electrical field in saturated clay can be transformed to additional loads causing more consolidation settlement.

  • PDF

An Outlook on the Draft-Tube-Surge Study

  • Nishi, Michihiro;Liu, Shuhong
    • International Journal of Fluid Machinery and Systems
    • /
    • v.6 no.1
    • /
    • pp.33-48
    • /
    • 2013
  • If large pressure fluctuation is observed in the draft tube of a Francis turbine at part-load operation, we have generally called it draft-tube-surge. As occurrence of this phenomenon seriously affects the limit of turbine operating range, extensive studies on the surge have been made since proposal of surge-frequency criterion given by Rheingans. According to the literature survey of related topics in recent IAHR symposiums on hydraulic machinery and systems, in which state-of-the-art contributions were mainly presented, a certain review of them may be desirable for an outlook on the future studies in this research field. Thus, in this review paper, the authors' previous attempts for the last three decades to challenge the following topics: a rational method for component test of a draft tube, nature of spiral vortex rope and its behavior in a draft tube and cavitation characteristics of pressure fluctuations, are introduced together with other related contributions, expecting that more useful and significant studies will be accomplished in the future.

Stability Analysis of Slope Considering Infiltration of Behind Ground (배면침투를 고려한 사면안정해석)

  • Shin, Jong-Ho;Kim, Hak-Moon;Jang, Kyung-Jun;Chae, Sung-Eun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1060-1067
    • /
    • 2009
  • Previous research on the slope failure has mainly reported that most of the slope failures occur due to surface rainfall infiltration in the rainy season. A slope of which surface is protected by shotcrete or plants, can also fail due to increase in pore water pressure from the ground water flow beneath the surface, rather than from the surface. In this study such case of slope behavior is investigated using the model test and numerical method including strength reduction method. Hydraulic boundary conditions of the slopes is considered using coupled numerical scheme. The failure mechanism of the slope is investigated and the effect of pore water pressure on slope safety is identified. Increase in pore water pressure due to lateral infiltration has significantly reduced the stability of slope.

  • PDF

Field Test for Estimation of Acting Force on the Drum Cutter Attachment (드럼커터 어태치먼트의 작용력에 대한 현장시험)

  • Soon-Wook, Choi;Chulho, Lee;Tae-Ho, Kang;Soo-Ho, Chang
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.373-385
    • /
    • 2022
  • The drum cutter, which is used in the form of an attachment of a excavator, is very useful in that it can be used in connection with a excavator that can perform various tasks in the field. This study estimated the load and torque acting on the drum cutter attachment by measuring the hydraulic pressure and strain that appear during excavation on the exposed rock slope using the drum cutter installed in the excavator. Working conditions such as the operation angle between the boom and arm of the excavator were divided into eight working modes. And as a result of analyzing the variations in hydraulic pressure and action force according to the working mode, it was confirmed that the hydraulic pressure and flow rate can be driven without any problems within the range considered in the manufacturing specifications of the drum cutter. The average load and torque acting on the drum cutter were within the range of the manufacturing specifications, but the maximum load was up to four times the specification. Because sumping was not properly performed due to the high ground strength and the ground included discontinuous surfaces in some locations, no trend of load and torque was found depending on the angle between the boom and arm of the excavator. However, it is believed that this result can be used to determine the range of loads and torques that appear on the drum cutter when excavating a high-intensity rock.

Characteristics of Synchronous and Asynchronous modes of fluctuations in Francis turbine draft tube during load variation

  • Goyal, Rahul;Cervantes, Michel J.;Gandhi, Bhupendra K.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.2
    • /
    • pp.164-175
    • /
    • 2017
  • Francis turbines are often operated over a wide load range due to high flexibility in electricity demand and penetration of other renewable energies. This has raised significant concerns about the existing designing criteria. Hydraulic turbines are not designed to withstand large dynamic pressure loadings on the stationary and rotating parts during such conditions. Previous investigations on transient operating conditions of turbine were mainly focused on the pressure fluctuations due to the rotor-stator interaction. This study characterizes the synchronous and asynchronous pressure and velocity fluctuations due to rotor-stator interaction and rotating vortex rope during load variation, i.e. best efficiency point to part load and vice versa. The measurements were performed on the Francis-99 test case. The repeatability of the measurements was estimated by providing similar movement to guide vanes twenty times for both load rejection and load acceptance operations. Synchronized two dimensional particle image velocimetry and pressure measurements were performed to investigate the dominant frequencies of fluctuations, vortex rope formation, and modes (rotating and plunging) of the rotating vortex rope. The time of appearance and disappearance of rotating and plunging modes of vortex rope was investigated simultaneously in the pressure and velocity data. The asynchronous mode was observed to dominate over the synchronous mode in both velocity and pressure measurements.

Waterhammer Caused by Startup and Stoppage of a Centrifugal Pump (원심펌프의 시동 및 정지에 따른 수격현상)

  • Kim, Kyung-Yup;Kim, Joum-Bea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.7 no.1 s.22
    • /
    • pp.51-57
    • /
    • 2004
  • The waterhammer has recently become more important because the pumping stations were big and the systems conveying the fluid through the large and long transmission pipelines were complex. When the pumps are started or stopped for the operation or tripped due to the power failure, the hydraulic transients occur as a result of the sudden change in velocity As the pressure waves are propagating between the pumping station and the distributing reservoir, the pressure inside the pipe drops to the liquid vapor pressure with the pipeline profile, at which time a vapor cavity forms, and finally the column separation occurs. If the pressure in the pipe is less than the atmospheric pressure, the pipe can be collapsed and destroyed after the water columns separated by the vapor cavity rejoin. During the reverse flow, the pressure is so abnormally increased at the pumping station that the accident of flooding may happen due to the failure of system. In this paper, the field tests on the waterhammer by the startup, stoppage, and power failure of a centrifugal pump were carried out for Yongma transmission pumping station in Seoul. The experimental results were compared with that of the numerical calculations, in which results the procedure of controlled pump normal shut-down and the two-step closing mode of controlling the ball valve for pump emergency stop are proposed to reduce the pressure surge.

Experimental Study of SBLOCA Simulation of Safety-Injection Line Break with Single Train Passive Safety System of SMART-ITL (SMART-ITL 1 계열 피동안전계통을 이용한 안전주입배관 파단 소형냉각재상실사고 모의에 대한 실험적 연구)

  • Ryu, Sung Uk;Bae, Hwang;Ryu, Hyo Bong;Byun, Sun Joon;Kim, Woo Shik;Shin, Yong-Cheol;Yi, Sung-Jae;Park, Hyun-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.3
    • /
    • pp.165-172
    • /
    • 2016
  • An experimental study of the thermal-hydraulic characteristics of passive safety systems (PSSs) was conducted using a system-integrated modular advanced reactor-integral test loop (SMART-ITL). The present passive safety injection system for the SMART-ITL consists of one train with the core makeup tank (CMT), the safety injection tank, and the automatic depressurization system. The objective of this study is to investigate the injection effect of the PSS on the small-break loss-of-coolant accident (SBLOCA) scenario for a 0.4 inch line break in the safety-injection system (SIS). The steady-state condition was maintained for 746 seconds before the break. When the major parameters of the target value and test results were compared, most of the thermal-hydraulic parameters agreed closely with each other. The water level of the reactor pressure vessel (RPV) was maintained higher than that of the fuel assembly plate during the transient, for the present CMT and safety injection tank (SIT) flow rate conditions. It can be seen that the capability of an emergency core cooling system is sufficient during the transient with SMART passive SISs.