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Abstract 

If large pressure fluctuation is observed in the draft tube of a Francis turbine at part-load operation, we have 
generally called it draft-tube-surge.  As occurrence of this phenomenon seriously affects the limit of turbine operating 
range, extensive studies on the surge have been made since proposal of surge-frequency criterion given by Rheingans.  
According to the literature survey of related topics in recent IAHR symposiums on hydraulic machinery and systems, in 
which state-of-the-art contributions were mainly presented, a certain review of them may be desirable for an outlook on 
the future studies in this research field.  Thus, in this review paper, the authors' previous attempts for the last three 
decades to challenge the following topics: a rational method for component test of a draft tube, nature of spiral vortex 
rope and its behavior in a draft tube and cavitation characteristics of pressure fluctuations, are introduced together with 
other related contributions, expecting that more useful and significant studies will be accomplished in the future. 
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1. Introduction 

The hydroelectric power system is quite usable in the electrical energy supply net-work, as it can quickly respond the demand 
and contribute to secure the stable net-work with high quality electricity.  If the hydroelectric system based on a hydraulic turbine 
can be used in the wider operating range, robustness and flexibility of the system are greatly improved.  However, we have still 
met such cases that the turbine operation is restricted due to the occurrence of severe noise and vibration of the system.  In the 
cases of reaction turbines, those undesirable phenomena are often caused by violent pressure fluctuations in the draft tube, which 
is assembled downstream of a turbine runner.   As those fluctuations might be amplified near the half load at a certain cavitation 
condition [1], their mysterious characters have attracted lots of fluid engineers and researchers. Falvey [2] summarized and 
surveyed the related works up to around 1970, including the well-known relationship demonstrated by Rheingans [3] who found 
out the dominant frequency being close to 1/3.6 times the runner rotational speed n (min-1) at the greatest pressure fluctuations, 
which should be called the draft tube surge.  If the flow field downstream of a turbine runner is examined at partial load 
operating condition, swirl flow is measured.  For instance, radial distributions of velocity components at the draft tube inlet of 
model Francis turbine [4] are shown with solid lines in Fig. 1, where Vz is the axial component of velocity and V is the 
circumferential component.  We can see such features that Vz distribution has wake-like velocity defect at the center region and 
V has the Rankine vortex pattern.  And swirl (or circumferential velocity) and the central low velocity region tend to increase 
with the decrease of discharge [4].  As the swirl flow could be called the vortex flow, an idea of vortex breakdown was applied to 
understand the helical structure of cavitated vortex core observed in a draft tube.  To promote our understanding on the 
instabilities generated by swirl flow, U.S.B.R. group   conducted systematic studies using the swirling airflow which was 
generated by a stationary circular cascade [5 - 8].  Extensive studies have been done in various institutions since then, and the 
trend continues even at present. We could see great many contributions treating the draft tube issue in recent proceedings of IAHR 
symposium on hydraulic machinery and systems. It may be due to the fact that we are always longing to have more gentle and 
elegant hydraulic turbines [9]. 

Around the late nineteen-seventies, when one of authors was engaged in this issue, the following were not very clear: 
(1) Is a component test for draft tube surge possible? If so, how to express the surge frequency? 
(2) What is the vortex rope? 
(3) What are the causes of pressure fluctuations? 
(4) Which technique is suitable to alleviate draft tube surges? 
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Nomenclature 

f    

g    

K   

Kcr   
Ki  
m, (mth ) 

n  
ns  
p~  

Q  
R  
Rd  
Rw  
rd  

Frequency [Hz]  
Gravitational acceleration [m/s2]  
Cavitation parameter  
Critical cavitation parameter  
Cavitation parameter defined at draft tube inlet  
Swirl rate ( theoretical swirl rate )  
Rotational speed [min-1]  
Specific speed  
Fluctuating component of pressure [Pa]  
Flow rate [m3/s]  
Radial distance [m]  
Radius of dead water region [m]   
Wall radius of draft tube [m]  
Dimensionless radius of dead water region 

St 
Stro  
Sts  

t  
Vz  , V 
  
PTP
rms 
ro 
sy 



21 ,   

21
~,~   

Dimensionless frequency 
Dimensionless rotating frequency of vortex rope 
Dimensionless natural frequency of draft tube  
Time [s] 
Axial and circumferential velocity components  
Dimensionless pressure amplitude 
Peak-to-peak amplitude 
Root-mean-square amplitude 
Rotating component of pressure amplitude 
Synchronous component of pressure amplitude 
Phase [deg] 
Water density  
Dimensionless pressure at location 1 and 2 
Fluctuation of dimensionless pressure at 1 and 2  
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