• 제목/요약/키워드: Hydraulic Press

검색결과 428건 처리시간 0.026초

Sustainable anaerobic digestion of euphorbiaceae waste for biogas production: Effects of feedstock variation

  • Kamaruddin, Mohamad Anuar;Ismail, Norli;Fauzi, Noor Fadhilah;Alrozi, Rasyidah;Hanif, Mohamad Haziq;Norashiddin, Faris Aiman
    • Advances in environmental research
    • /
    • 제10권1호
    • /
    • pp.87-103
    • /
    • 2021
  • Anaerobic digestion (AD) refers to the biological process which can convert organic substrates to biogas in the absence of oxygen. The aim of this study was to determine the capability of feedstock to produce biogas and to quantify the biogas yield from different feedstocks. A co-digestion approach was carried out in a continuous stirred tank reactor operated under mesophilic conditions and at a constant organic loading rate of 0.0756 g COD/ L.day, with a hydraulic retention time of 25 days. For comparison, mono-digestion was also included in the experimental work. 2 L working volumes were used throughout the experimental work. The seed culture was obtained from composting as substrate digestion. When the feedstock was added to seeding, the biogas started to emit after three days of retention time. The highest volume of biogas was observed when the seeding volume used for 1000mL. However, the lowest volume of biogas yield was obtained from both co-digestion reactors, with a value of 340 mL. For methane yield, the highest methane production rate was 0.16 L CH4/mg. The COD with yield was at 8.6% and the lowest was at 0.5%. The highest quantity of methane was obtained from a reactor of Euphorbiaceae peel with added seeding, while the lowest methane yield came from a reactor of Euphorbiaceae stems with added seeding. In this study, sodium bicarbonate (NaHCO3) was used as a buffering solution to correct the pH in the reactor if the reactor condition was found to be in a souring or acidic condition.

Fuzzy-based multiple decision method for landslide susceptibility and hazard assessment: A case study of Tabriz, Iran

  • Nanehkaran, Yaser A.;Mao, Yimin;Azarafza, Mohammad;Kockar, Mustafa K.;Zhu, Hong-Hu
    • Geomechanics and Engineering
    • /
    • 제24권5호
    • /
    • pp.407-418
    • /
    • 2021
  • Due to the complexity of the causes of the sliding mass instabilities, landslide susceptibility and hazard evaluation are difficult, but they can be more carefully considered and regionally evaluated by using new programming technologies to minimize the hazard. This study aims to evaluate the landslide hazard zonation in the Tabriz region, Iran. A fuzzy logic-based multi-criteria decision-making method was proposed for susceptibility analysis and preparing the hazard zonation maps implemented in MATLAB programming language and Geographic Information System (GIS) environment. In this study, five main factors have been identified as triggering including climate (i.e., precipitation, temperature), geomorphology (i.e., slope gradient, slope aspect, land cover), tectonic and seismic parameters (i.e., tectonic lineament congestion, distribution of earthquakes, the unsafe radius of main faults, seismicity), geological and hydrological conditions (i.e., drainage patterns, hydraulic gradient, groundwater table depth, weathered geo-materials), and human activities (i.e., distance to roads, distance to the municipal areas) in the study area. The results of analyses are presented as a landslide hazard map which is classified into 5 different sensitive categories (i.e., insignificant to very high potential). Then, landslide susceptibility maps were prepared for the Tabriz region, which is categorized in a high-sensitive area located in the northern parts of the area. Based on these maps, the Bozgoosh-Sahand mountainous belt, Misho-Miro Mountains and western highlands of Jolfa have been delineated as risk-able zones.

암반 커팅 스플리팅 공법의 적정 압입력 추산을 위한 분석해 (Estimating and Analyzing the Appropriate Pressing Force of the Rock Cutting Splitting Method)

  • 이상민;김문규;조정우;유상화
    • 터널과지하공간
    • /
    • 제31권6호
    • /
    • pp.415-427
    • /
    • 2021
  • 본 기술보고는 개발 중인 암반 커팅 스플리팅 공법을 간략히 소개하였다. 이 공법은 암반 커팅 공정 후 블럭을 스플리팅하여 암반을 굴착하는 공법이다. 암반면의 커팅 지오메트리를 설계한 후 치즐을 압입하여 암석블록을 제거하는 방식이다. 이 때 적절하게 커팅블록이 설계되어야 원활한 암석블록 하단부에 인장균열이 원활히 전파된다. 인장균열 성장에 필요한 파괴인성 모드1을 이용하여 암석블럭의 스플리팅에 필요한 압입력을 추산하는 분석해를 고안하였다. 굴착기의 유압브레이커의 타격력을 분석하였고, 암석블록 설계 지오메트리에 따라 시공가능한 굴착기 등급을 분석하였다.

The influence of nano-silica on the wear and mechanical performance of vinyl-ester/glass fiber nanocomposites

  • Sokhandani, Navid;Setoodeh, AliReza;Zebarjad, Seyed Mojtaba;Nikbin, Kamran;Wheatley, Greg
    • Advances in nano research
    • /
    • 제13권1호
    • /
    • pp.97-111
    • /
    • 2022
  • In the present article, silica nanoparticles (SNPs) were exploited to improve the tribological and mechanical properties of vinyl ester/glass fiber composites. To the best of our knowledge, there hasn't been any prior study on the wear properties of glass fiber reinforced vinyl ester SiO2 nanocomposites. The wear resistance is a critical concern in many industries which needs to be managed effectively to reduce high costs. To examine the influence of SNPs on the mechanical properties, seven different weight percentages of vinyl ester/nano-silica composites were initially fabricated. Afterward, based on the tensile testing results of the silica nanocomposites, four wt% of SNPs were selected to fabricate a ternary composite composed of vinyl ester/glass fiber/nano-silica using vacuum-assisted resin transfer molding. At the next stage, the tensile, three-point flexural, Charpy impact, and pin-on-disk wear tests were performed on the ternary composites. The fractured surfaces were analyzed by scanning electron microscopy (SEM) images after conducting previous tests. The most important and interesting result of this study was the development of a nanocomposite that exhibited a 52.2% decrease in the mean coefficient of friction (COF) by augmenting the SNPs, which is beneficial for the fabrication/repair of composite/steel energy pipelines as well as hydraulic and pneumatic pipe systems conveying abrasive materials. Moreover, the weight loss due to wearing the ternary composite containing one wt% of SNPs was significantly reduced by 70%. Such enhanced property of the fabricated nanocomposite may also be an important design factor for marine structures, bridges, and transportation of wind turbine blades.

Investigation of a fiber reinforced polymer composite tube by two way coupling fluid-structure interaction

  • Daricik, Fatih;Canbolat, Gokhan;Koru, Murat
    • Coupled systems mechanics
    • /
    • 제11권4호
    • /
    • pp.315-333
    • /
    • 2022
  • Fluid-Structure Interaction (FSI) modeling is highly effective to reveal deformations, fatigue failures, and stresses on a solid domain caused by the fluid flow. Mechanical properties of the solid structures and the thermophysical properties of fluids can change under different operating conditions. In this study, we investigated the interaction of [45/-45]2 wounded composite tubes with the fluid flows suddenly pressurized to 5 Bar, 10 Bar, and 15 Bar at the ambient temperatures of 24℃, 66℃, and 82℃, respectively. Numerical analyzes were performed under each temperature and pressure condition and the results were compared depending on the time in a period and along the length of the tube. The main purpose of this study is to present the effects of the variations in fluid characteristics by temperature and pressure on the structural response. The variation of the thermophysical properties of the fluid directly affects the deformation and stress in the material due to the Wall Shear Stress (WSS) generated by the fluid flow. The increase or decrease in WSS directly affected the deformations. Results show that the increase in deformation is more than 50% between 5 Bar and 10 Bar for the same operating condition and it is more than 100% between 5 Bar and 15 Bar by the increase in pressure, as expected in terms of the solid mechanics. In the case of the increase in the temperature of fluid and ambient, the WSS and Von Mises stress decrease while the slight increases of deformations take place on the tube. On the other hand, two-way FSI modeling is needed to observe the effects of hydraulic shock and developing flow on the structural response of composite tubes.

Soil water retention and hysteresis behaviors of different clayey soils at high suctions

  • Li, Ze;Gao, You;Yu, Haihao;Chen, Bo;Wang, Long
    • Geomechanics and Engineering
    • /
    • 제30권4호
    • /
    • pp.373-382
    • /
    • 2022
  • Unsaturated soil at high suctions is widespread. Many civil engineering projects are related to the hydro-mechanical behavior of unsaturated soils at high suctions, particularly in arid and semiarid areas. To investigate water retention behaviors of nine clayey soils (one is classified as fat clay and the others are classified as lean clay according to the unified soil classification system), the high suction (3.29-286.7 MPa) was imposed on the specimens at zero net stress by the vapor equilibrium technique. In this paper, the effect of void ratio on the water retention behavior at high suction was discussed in detail. Validation data showed that soil types, i.e., different mineralogical compositions, are critical in the soil water retention behavior at a high suction range. Second, the hysteresis behavior at a high suction range is mainly related to the clay content and the specific surface area. And the mechanism of water retention and hysteresis behavior at high suctions was discussed. Moreover, the maximum suction is not a unique value, and it is crucial to determine the maximum suction value accurately, especially for the shear strength prediction at high suctions. If the soil consists of hydrophilic minerals such as montmorillonite and illite, the maximum suction will be lower than 106 kPa. Finally, using the area of hysteresis to quantify the degree of hysteresis at a high suction range is proposed. There was a good correlation between the area of hydraulic hysteresis and the specific surface area.

A novel method for generation and prediction of crack propagation in gravity dams

  • Zhang, Kefan;Lu, Fangyun;Peng, Yong;Li, Xiangyu
    • Structural Engineering and Mechanics
    • /
    • 제81권6호
    • /
    • pp.665-675
    • /
    • 2022
  • The safety problems of giant hydraulic structures such as dams caused by terrorist attacks, earthquakes, and wars often have an important impact on a country's economy and people's livelihood. For the national defense department, timely and effective assessment of damage to or impending damage to dams and other structures is an important issue related to the safety of people's lives and property. In the field of damage assessment and vulnerability analysis, it is usually necessary to give the damage assessment results within a few minutes to determine the physical damage (crack length, crater size, etc.) and functional damage (decreased power generation capacity, dam stability descent, etc.), so that other defense and security departments can take corresponding measures to control potential other hazards. Although traditional numerical calculation methods can accurately calculate the crack length and crater size under certain combat conditions, it usually takes a long time and is not suitable for rapid damage assessment. In order to solve similar problems, this article combines simulation calculation methods with machine learning technology interdisciplinary. First, the common concrete gravity dam shape was selected as the simulation calculation object, and XFEM (Extended Finite Element Method) was used to simulate and calculate 19 cracks with different initial positions. Then, an LSTM (Long-Short Term Memory) machine learning model was established. 15 crack paths were selected as the training set and others were set for test. At last, the LSTM model was trained by the training set, and the prediction results on the crack path were compared with the test set. The results show that this method can be used to predict the crack propagation path rapidly and accurately. In general, this article explores the application of machine learning related technologies in the field of mechanics. It has broad application prospects in the fields of damage assessment and vulnerability analysis.

Research on no coal pillar protection technology in a double lane with pre-set isolation wall

  • Liu, Hui;Li, Xuelong;Gao Xin;Long, Kun;Chen, Peng
    • Geomechanics and Engineering
    • /
    • 제27권6호
    • /
    • pp.537-550
    • /
    • 2021
  • There are various technical problems need to be solved in the construction process of pre-setting an isolation wall into a double lane in the outburst prone mine. This study presents a methodology that pre-setting an isolation wall into a double lane without a coal pillar. This requires the excavation of two small section roadways to dig a wide section roadway, followed by construction of the separation wall. During this process the connecting lane is reserved. In order to ensure the stability of the separation wall, the required bearing capacity of the isolation wall is 4.66 MN/m and the deformation of the isolation wall is approximately 25 cm. To reduce the difficulty of implementing support the roadway is driven by 5 m/d. After the construction of the separation wall, the left side coal wall is brushed 1.5 m to make the width of the gas roadway reach 2.5 m and the roadway support utilizes anchor rod, ladder beam, anchor cable beam and net configuration. During construction, the concrete pump and removable self-propelled hydraulic wall mold are used to pump and pour the concrete of the isolation wall. In the process of mining, the stress distribution of coal body and isolation wall is detected and measured on site. The results demonstrate that the deformation of the surrounding rock of roadway and separation of roof in the roadway is small. The stress of the bolt and anchor cable is within equipment tolerance validating their selection. The roadway is well supported and the intended goal is achieved. The methodology can be used for reference for similar mine gas control.

Coupled effect of variable Winkler-Pasternak foundations on bending behavior of FG plates exposed to several types of loading

  • Himeur, Nabil;Mamen, Belgacem;Benguediab, Soumia;Bouhadra, Abdelhakim;Menasria, Abderrahmane;Bouchouicha, Benattou;Bourada, Fouad;Benguediab, Mohamed;Tounsi, Abdelouahed
    • Steel and Composite Structures
    • /
    • 제44권3호
    • /
    • pp.353-369
    • /
    • 2022
  • This study attempts to shed light on the coupled impact of types of loading, thickness stretching, and types of variation of Winkler-Pasternak foundations on the flexural behavior of simply- supported FG plates according to the new quasi-3D high order shear deformation theory, including integral terms. A new function sheep is used in the present work. In particular, both Winkler and Pasternak layers are non-uniform and vary along the plate length direction. In addition, the interaction between the loading type and the variation of Winkler-Pasternak foundation parameters is considered and involved in the governing equilibrium equations. Using the virtual displacement principle and Navier's solution technique, the numerical results of non-dimensional stresses and displacements are computed. Finally, the non-dimensional formulas' results are validated with the existing literature, and excellent agreement is detected between the results. More importantly, several complementary parametric studies with the effect of various geometric and material factors are examined. The present analytical model is suitable for investigating the bending of simply-supported FGM plates for special technical engineering applications.

Development of flood hazard and risk maps in Bosnia and Herzegovina, key study of the Zujevina River

  • Emina, Hadzic;Giuseppe Tito, Aronica;Hata, Milisic;Suvada, Suvalija;Slobodanka, Kljucanin;Ammar, Saric;Suada, Sulejmanovic;Fehad, Mujic
    • Coupled systems mechanics
    • /
    • 제11권6호
    • /
    • pp.505-524
    • /
    • 2022
  • Floods represent extreme hydrological phenomena that affect populations, environment, social, political, and ecological systems. After the catastrophic floods that have hit Europe and the World in recent decades, the flood problem has become more current. At the EU level, a legal framework has been put in place with the entry into force of Directive 2007/60/EC on Flood Risk Assessment and Management (Flood Directive). Two years after the entry into force of the Floods Directive, Bosnia and Herzegovina (B&H), has adopted a Regulation on the types and content of water protection plans, which takes key steps and activities under the Floods Directive. The "Methodology for developing flood hazard and risk maps" (Methodology) was developed for the territory of Bosnia and Herzegovina, following the methodology used in the majority of EU member states, but with certain modifications to the country's characteristics. Accordingly, activities for the preparation of the Preliminary Flood Risk Assessment for each river basin district were completed in 2015 for the territory of Bosnia and Herzegovina. Activities on the production of hazard maps and flood risk maps are in progress. The results of probable climate change impact model forecasts should be included in the preparation of the Flood Risk Management Plans, which is the subsequent phase of implementing the Flood Directive. By the foregoing, the paper will give an example of the development of the hydrodynamic model of the Zujevina River, as well as the development of hazard and risk maps. Hazard and risk maps have been prepared for medium probability floods of 1/100 as well as for high probability floods of 1/20. The results of LiDAR (Light Detection and Ranging) recording were used to create a digital terrain model (DMR). It was noticed that there are big differences between the flood maps obtained by recording LiDAR techniques in relation to the previous flood maps obtained using georeferenced topographic maps. Particular attention is given to explaining the Methodology applied in Bosnia and Herzegovina.