• Title/Summary/Keyword: Hydraulic Model Experiment

Search Result 313, Processing Time 0.034 seconds

Hydraulic Model Experiment on the Circulation in Sagami Bay, Japan (II) - Dependence of the Circulation Pattern on External and Internal Rossby Number in Baroclinic Rotating Model

  • Choo Hyo-Sang;Sugimoto Takasige
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.1
    • /
    • pp.5-20
    • /
    • 2002
  • To investigate the effect of mechanical parameters on the circulation and its fluctuation in Sagami Bay, baroclinic model experiments were carried out by use of a two-layer source-sink flow in a rotating tank. In the experiment, a simple coastal topography with flat bottom was reproduced. The results show that the path of the Through Flow, which corresponds to the branch current of the Kuroshio, depends on external Rossby number (Ro) and internal Rossby number $(Ro^*)$, and divided into two regimes. For $Ro^*\leq1.0$ in which Rossby internal radius of deformation of the Through Flow is smaller than the width of the approaching channel, the current flows along the Oshima Island as a coastal boundary density current separated from the western boundary of the channel. For $Ro^*>1.0$ it changes to a jet flow along the western boundary of the channel, separated from the coast of Oshima Island. The current is independent on both Ro and Ro* in the regime of $Ro^*>1.0,\;Ro\geq0.06$ and $Ro^*\leq1.0,\;Ro\geq0.06$. The pattern of the cyclonic circulation in the inner part of the bay is also determined by Ro and Ro*. In case of $Ro^*\leq1.0$, frontal eddies are formed in the northern boundary of the Through Flow. These frontal eddies intrude into the inner part along the eastern boundary of the bay providing vorticity to form and maintain the inner cyclonic circulation. For $Ro^*>1.0$, the wakes from the Izu peninsula are superposed intensifying the cyclonic circulation. The pattern of the cyclonic circulation is divided into three types; 1) weak cyclonic circulation and the inner anticyclonic circulation $(Ro<0.12)$. 2) cyclonic circulation in the bay $(0.12\leq Ro<0.25)$. 3) cyclonic circulation with strong boundary current $(RO\geq0.25)$.

Experiment Study on Field Applicability of Siphon as a Intake Facility of Agricultural Reservoir for Disaster Prevention (재해대비 농업용저수지 취수시설로서 사이폰의 현장적용성에 관한 실험적 연구)

  • Yang, Young Jin;Lee, Tae Ho;Oh, Sue Hoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.2
    • /
    • pp.103-110
    • /
    • 2018
  • Most of the intake facilities of small agricultural reservoirs are conduits and they are regarded as serious defects due to the structural weakness that penetrates the body of the dam, and countermeasures are needed. This study suggests the application method of siphon type water intake facility by hydraulic model test and physical scale model test of siphon type water intake facility which has high safety and easy maintenance. Experimental results show that sufficient flow rate can be secured for the purpose of intaking water according to the differential head between the reservoir and the discharge part, and the flow rate can be controlled by the valve. The negative pressure was -31.5 kPa, and vibration and noise did not occur during the operation of the siphon. The maximum flow velocity in the discharge outlet was 1.11 m/s which meets the criterion for irrigation canals. Therefore, scour risk would be very low. As a result of the inflow distribution experiment, even if the inflow part is separated by only about 0.8 m, the flow velocity is remarkably decreased, so that the clogging by debris would not appear. When the pump was operated only once for the first time and the inside of the siphon was filled with water, continuous operation was possible by only valve operation. The results of this study are expected to be used for the design guidelines of the water intake facilities and improve safety and maintenance convenience of agricultural reservoirs.

A Method of Site Selection for the Artificial Recharge of Groundwater Using Geospatial Data (지형공간자료를 이용한 지하수 인공함양 적지 선정 방안)

  • Lee, Jae One;Seo, Minho;Han, Chan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.5
    • /
    • pp.427-436
    • /
    • 2015
  • This study aims to select an optimal site for the development of small-scaled artificial ground water recharge system with the purpose of 50ton/day pumping in dry season. First of all, the topography shape satisfying the numerous factors of a hydraulic model experiment is defined and an appropriate pumping efficiency is calculated through the model experiment of injection and pumping scenario. In next step, GIS(Geographic Information System) database are constructed by processing several geospatial data to explore the optimal site. In detail, watershed images are generated from DEM(Digital Elevation Model) with 5m cell size, which is set for the minimum area of the optimal site selection. Slope maps are made from DEM to determine the optimal hydraulic gradient to procure the proper aquifer undercurrent period. Finally, the suitable site for artificial recharge system is selected using an integration of overall data, such as an alluvial map, DEM, orthoimages, slope map, and watershed images.

Application of Boussinesq Equation Model for the Breaking Wave Behavior around Underwater Shoals (수중 천퇴에서의 쇄파거동 예측을 위한 Boussinesq 방정식 모델의 적용)

  • Chun, In-Sik;Kim, Gui-Dong;Sim, Jae-Seol
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.2
    • /
    • pp.154-165
    • /
    • 2006
  • In the present study, a numerical model using Boussinesq equation is set up to predict the interacted equilibrium between waves and their induced currents in the occurrence of breaking waves over an underwater shoal, and the numerical results are compared with results of existing hydraulic experiments. A sensitivity analysis has been done to find out appropriate values of breaking wave parameters with the result (regular wave case) of Vincent and Briggs (1989)’ experiment. Then the numerical model is applied to the irregular wave cases of the experiment and the hydraulic model test of Ieodo which is a natural undersea shoal. The results show that a strong current forms in the wave direction at the downstream side of the shoals, causing the attenuation of wave heights there. The calculated wave heights generally show a similar pattern with the measured data.

A Physical Model Test of Flood Level Changes by the Vegetation on the Floodplain of Urban River (도시하천 둔치내 식생의 평면적 분포에 따른 홍수위 변화의 실험적 연구)

  • Jo, Hong-Je;Choe, Hyeon-Geun;Lee, Tae-Yeong
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.2
    • /
    • pp.203-212
    • /
    • 2002
  • The purpose of this study was to examine the effect of vegetation on the flood plain in the Taewha river on the changes of flood level using a hydraulic physical model experiment. To simulate 9.0 km river, 1/300 horizontally and 1/72 vertically distorted model was used. The vegetation areas were divided by three sub -areas and the flood level changes were examined according to the locations of vegetation as well as the transverse Profile. As a result, the flood level changes were not significantly affected by the densely distributed vegetation. It was concluded that additional adjustable vegetation in urban river could make useful hydrophilic space.

An Assessment of the Best Estimate Thermal-Hydraulic Analysis Code CATHARE on CREARE Downcomer Experiment (CREARE Downcomer실험에 대한 최적열수력 분석용 전산코드 CATHARE의 검증)

  • Chang, Won-Pyo;Lee, Jae-Hoon;Kim, Dong-Su;Chae, Sung-Ki
    • Nuclear Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.274-284
    • /
    • 1992
  • A 1/15-scale CREARE experiment, which simulates the thermal-hydraulic behavior in the reactor pressure vessel of a PWR during a hypothetical Loss Of Coolant Accident, has been analyzed using CATHARE code for the associated model assessment to represent the phenomenon. The key parameters examined in the CREARE experiment were known as ECC water injection rate. ECC water subcooling, system pressure, and steam flow rate coming out from the core bottom. The present CATHARE simulation, however, has been mainly focused on qualitative analysis of a countercurrent flow in the downcomer. The discrepancy of the simulation results with the experimental data is considered arising primarily from an inadequate numerical representation as well as an interfacial friction model. Accordingly it is suggested from the sensitivity studies that either multidimensional approach or further examination of momentum equations at a junction near a volume element in CATHARE be necessary in order to represent the phenomenon more realistically.

  • PDF

A Numerical Study on the Effect of Inlet Guide Vane Angle on the Performance of Francis Hydraulic Turbine

  • Kim Chul-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.7
    • /
    • pp.750-757
    • /
    • 2005
  • The objective of this study is an understanding of the effect of inlet flow angle on the output power performance of a Francis hydraulic turbine, An optimum induced angle at the inlet of the turbine is one of the most important design parameters to have the best performance of the turbine at a given operating condition, In general. rotating speed of the turbine is varied with the change of water mass flowrate in a volute, The induced angle of the inlet water should be properly adjusted to the operating condition to have maximum energy conversion efficiency of the turbine, In this study. a numerical simulation was conducted to have detail understanding of the flow phenomenon in the flow path and output power of the model Francis turbine. The indicated power produced by the model turbine at a given operating condition was found numerically and compared to the brake power of the turbine measured by experiment at KIER. From comparison of two results, turbine efficiency or energy conversion efficiency of the model turbine was estimated. From the study, it was found that the rotating power of the turbine linearly increased with the rotating speed. It means that the higher volume flow rate supplied. the bigger torque on the turbine shaft generated. The maximum brake efficiency of the turbine is around 46$\%$ at 35 degree of induced angle. The difference between numerical and experimental output of the model turbine is defined as mechanical efficiency. The maximum mechanical efficiency of the turbine is around 93$\%$ at 25$\∼$30 degree of induced angle.

A Study on the Control of Short-period Waves by Resonator (공진장치에 의한 단주기파랑의 제어에 관한 연구)

  • Lee, Kwang-Ho;Beom, Seong-Sim;Kim, Do-Sam;Park, Jong-Bae;An, Seong-Wook
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.1
    • /
    • pp.36-47
    • /
    • 2012
  • In this study, the control performance of resonator was reviewed through numerical analysis and 3-dimensional hydraulic model experiments by attaching the resonator suggested in the existing studies to the openings of rectangular harbor and breakwater placed in a straight line to reduce short-period waves. In the numerical analysis, linear analysis method of singularity distribution method based on vertical-line Green function and full non-linear analysis method by 3D-NIT model were applied, and the validity of the numerical analysis methods was verified through comparative analysis between results of hydraulic experiments and numerical analysis results. In addition, effectiveness of the resonator was confirmed by reviewing its control performance on the short-period waves through review on the comparison with the case in which the resonator is not attached.

Development of Artificial Neural Network Model for Simulating the Flow Behavior in Open Channel Infested by Submerged Aquatic Weeds

  • Abdeen Mostafa A. M.
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1576-1589
    • /
    • 2006
  • Most of surface water ways in Egypt suffer from the infestation of aquatic weeds especially submerged ones which cause lots of problems for the open channels and the water structures such as increasing water losses, obstructing the water flow, and reducing the efficiency of the water structures. Accurate simulation of the water flow behavior in such channels is very essential for water distribution decision makers. Artificial Neural Network (ANN) has been widely utilized in the past ten years in civil engineering applications for the simulation and prediction of the different physical phenomena and has proven its capabilities in the different fields. The present study aims towards introducing the use of ANN technique to model and predict the impact of the existence of submerged aquatic weeds on the hydraulic performance of open channels. Specifically the current paper investigates utilizing the ANN technique in developing a simulation and prediction model for the flow behavior in an open channel experiment that simulates the existence of submerged weeds as branched flexible elements. This experiment was considered as an example for implementing the same methodology and technique in a real open channel system. The results of current manuscript showed that ANN technique was very successful in simulating the flow behavior of the pre-mentioned open channel experiment with the existence of the submerged weeds. In addition, the developed ANN models were capable of predicting the open channel flow behavior in all the submerged weeds' cases that were considered in the ANN development process.

An Experimental Study for the Hydraulic Characteristics of Vertical lift Gates with Sediment Transport (퇴적토 배출을 수반한 연직수문의 수리특성에 관한 실험적 연구)

  • Choi, Seung Jea;Lee, Ji Haeng;Choi, Heung Sik
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.4
    • /
    • pp.246-256
    • /
    • 2018
  • In order to analyze hydraulic characteristics of discharge coefficient, hydraulic jump height, and hydraulic jump length, accompanied sediment transport, in the under-flow type vertical lift gate, the hydraulic model experiment and dimensional analysis were performed. The correlations between Froude number and hydraulic characteristics were schematized according to the presence and absence of sediment transport; the correlation of hydraulic characteristics and non-dimensional parameters was analyzed and multiple regression formulae were developed. In the hydraulic characteristics accompanied the sediment transport, by identifying the aspect different from the case that the sediment transport is absent, we verified that it is necessary to introduce variables that can express the characteristics of sediment transport. The multiple regression equations were suggested and each determination coefficient appeared high as 0.749 for discharge coefficient, 0.896 for hydraulic jump height, and 0.955 for hydraulic jump length. In order to evaluate the applicability of the developed hydraulic characteristic equations, 95% prediction interval analysis was conducted on the measured and the calculated by regression equations, and it was determined that NSE (Nash-Sutcliffe Efficiency), RMSE (root mean square), and MAPE (mean absolute percentage error) are appropriate, for the accuracy analysis related to the prediction on hydraulic characteristics of discharge coefficient, hydraulic jump height and length.