Application of Boussinesq Equation Model for the Breaking Wave Behavior around Underwater Shoals

수중 천퇴에서의 쇄파거동 예측을 위한 Boussinesq 방정식 모델의 적용

  • Chun, In-Sik (Department of Civil Engineering, Konkuk University) ;
  • Kim, Gui-Dong (Department of Civil Engineering, Konkuk University) ;
  • Sim, Jae-Seol (Coastal and Harbor Engineering Division, Korea Ocean Research and Development Institute)
  • 전인식 (건국대학교 토목공학과) ;
  • 김귀동 (건국대학교 토목공학과) ;
  • 심재설 (한국해양연구원 연안.항만공학본부)
  • Published : 2006.06.01

Abstract

In the present study, a numerical model using Boussinesq equation is set up to predict the interacted equilibrium between waves and their induced currents in the occurrence of breaking waves over an underwater shoal, and the numerical results are compared with results of existing hydraulic experiments. A sensitivity analysis has been done to find out appropriate values of breaking wave parameters with the result (regular wave case) of Vincent and Briggs (1989)’ experiment. Then the numerical model is applied to the irregular wave cases of the experiment and the hydraulic model test of Ieodo which is a natural undersea shoal. The results show that a strong current forms in the wave direction at the downstream side of the shoals, causing the attenuation of wave heights there. The calculated wave heights generally show a similar pattern with the measured data.

본 연구에서는 수중 천퇴부에서 쇄파가 발생할 시 주변 파랑과 파랑류의 평형계를 직접 해석할 수 있는 Boussinesq 방정식 모델을 수립하고 이 결과를 수리실험 결과와 비교하였다. 사용된 쇄파모델은 쇄파 감쇠항을 모멘텀 방정식에 포함시키는 일종의 와점성 계수 모델이며, 관련된 쇄파 매개변수의 적정 값들을 Vincent and Briggs (1989)의 규칙파 실험자료를 이용한 민감도 분석을 통하여 결정하였다. 구해진 적정 매개변수 값들을 가지고 수치해석을 수행하여 이 결과를 불규칙파 실험결과와 이어도 천연암초의 수리모형실험 결과와 비교하였다. 그 결과, 천퇴부 하류 쪽에 파 진행방향으로 향하는 강한 쇄파유도류가 발생함에 따라 저파고대가 형성되며 전반적으로 계측파고의 분포와 유사함을 확인하였다.

Keywords

References

  1. 전인식, 심재설(2005). 이어도 주변 파고분포에 대한 수리 모형실험. 한국해안.해양공학회지, 17(1), 55-59
  2. 전인식, 성상봉, 김귀동, 심재설(2005). Boussinesq 방정식을 이용한 수중 천퇴에서의 파랑변형 및 파랑류 계산. 한국해안.해양공학회지, 17(3), 202-212
  3. Borgman, L.E. (1984). Directional spectrum estimation for the gages. Tech. Rep. CHL-97-24, United States Army Corps of Engineers (USACE), Waterway Experiment Station
  4. Dally, W.R., Dean, R.G. and Dalrymple, R.A. (1985). Wave height variation across beaches of arbitrary profile. J. of Geophys. Res., 90(C6), 11917-11927 https://doi.org/10.1029/JC090iC06p11917
  5. Heitner, K.L. and Housner, G.W. (1970). Numerical model for tsunami run-up. J. Waterw, Harbors Coastal Eng. Div., ASCE, 96, 701-719
  6. Horikawa, K. and Kuo, C.T. (1966). A study on wave transformation inside surf zone. Proc. 10th Coastal Eng. Conf., ASCE, 217-233
  7. Karambas, Th.V. and Koutitas, C. (1992). A breaking wave propagation model based on the Boussinesq equations. Coastal Engineering, 18, 1-19 https://doi.org/10.1016/0378-3839(92)90002-C
  8. Kennedy, A.B., Chen, Q., Kirby, J.T. and Dalrymple, R.A. (2000). Boussinesq modeling of wave transformation, breaking, and runup I: 1D. J. Waterway, Ports, Coastal and Ocean Eng., 126(1), 39-47 https://doi.org/10.1061/(ASCE)0733-950X(2000)126:1(39)
  9. Le Mehaute, B. (1963). On non-saturated breakers and the wave run-up. Proc. 8th Int. Conf. on Coastal Eng., ASCE, 77-92
  10. Madsen, P.A., Bingham, H.B. and Liu, H. (2002). A new Boussinesq method for fully nonlinear waves from shallow to deep water. J. Fluid Mech., 462, 1-30
  11. Musumeci, R., Svendsen, I.A. and Veeramony, J. (2005). The flow in the surf zone: a fully nonlinear Boussinesq-type of approach. Coastal Engineering, 52, 565-598 https://doi.org/10.1016/j.coastaleng.2005.02.007
  12. Nwogu, O. (1993). Alternative form of Boussinesq equation for nearshore wave propagation. J. Wtrway., Port, Coast. and Oc. Engrg., ASCE, 119(6), 618-638 https://doi.org/10.1061/(ASCE)0733-950X(1993)119:6(618)
  13. Schaffer, H.A., Madsen, P.A. and Deigaard, R. (1993). A Boussinesq model for waves breaking in shallow water. Coastal Engineering, 20, 185-202 https://doi.org/10.1016/0378-3839(93)90001-O
  14. Shapiro, R. (1970). Smoothing, filtering, and boundary effects. Review of Geophysics and Space Physics, 8(2), 359-386 https://doi.org/10.1029/RG008i002p00359
  15. Sorensen, O.R., Schäffer, H.A. and Madsen, P.A. (1998). Sirf zone dynamics simulated by a Boussinesq type model. III. Wave-induced horizontal nearshore circulations. Coastal Engineering, 33, 155-176 https://doi.org/10.1016/S0378-3839(98)00007-6
  16. Strybny, J. and Zielke, W. (2000). Extended viscosity concepts for wave breaking in Boussinesq type models. Proc. 27th Coastal Eng. Conf., ASCE, 1307-1320
  17. Svendsen, I.A. (1984). Wave heights and setup in a surf zone. Coastal Engineering, 8(4), 303-329 https://doi.org/10.1016/0378-3839(84)90028-0
  18. Vincent, C.L. and Briggs, M.J. (1989). Refraction-diffraction of irregular waves over a mound. J. Wtrway., Port, Coast. and Oc. Engrg., ASCE, 115(2), 269-283 https://doi.org/10.1061/(ASCE)0733-950X(1989)115:2(269)
  19. Wei, G., Kirby, J.T., Grilli, S.T. and Subramanya, R. (1995). A fully nonlinear Boussinesq model for surface waves, Part 1, highly nonlinear unsteady waves. J. Fluid Mechanics, 294, 71-92 https://doi.org/10.1017/S0022112095002813
  20. Yoon, S., Cho, Y. and Lee, C. (2004). Effects of breakinginduced currents on refraction-diffraction of irregular waves over submerged shoal. Ocean Engineering, 31, 633-652 https://doi.org/10.1016/j.oceaneng.2003.07.008
  21. Zelt, J.A. (1991). The run-up of nonbreaking and breaking solitary waves. Coastal Engineering, 15, 205-246 https://doi.org/10.1016/0378-3839(91)90003-Y