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Development of Artificial Neural Network Model
for Simulating the Flow Behavior in Open Channel Infested
by Submerged Aquatic Weeds

Mostafa A. M. Abdeen®
Department of Engineering Math. & Physics, Faculty of Engineering— Cairo University,
Egypt

Most of surface water ways in Egypt suffer from the infestation of aquatic weeds especially
submerged ones which cause lots of problems for the open channels and the water structures
such as increasing water losses, obstructing the water flow, and reducing the efficiency of the
water structures. Accurate simulation of the water flow behavior in such channels is very essen-
tial for water distribution decision makers. Artificial Neural Network (ANN) has been widely
utilized in the past ten years in civil engineering applications for the simulation and prediction
of the different physical phenomena and has proven its capabilities in the different fields. The
present study aims towards introducing the use of ANN technique to model and predict the
impact of the existence of submerged aquatic weeds on the hydraulic performance of open
channels. Specifically the current paper investigates utilizing the ANN technique in developing
a simulation and prediction model for the flow behavior in an open channel experiment that
simulates the existence of submerged weeds as branched flexible elements. This experiment was
considered as an example for implementing the same methodology and technique in a real open
channel system. The results of current manuscript showed that ANN technique was very success-
ful in simulating the flow behavior of the pre-mentioned open channel experiment with the
existence of the submerged weeds. In addition, the developed ANN models were capable of
predicting the open channel flow behavior in all the submerged weeds’ cases that were consi-

dered in the ANN development process.

Key Words : Artificial Neural Network, Open Channel Hydraulics Modeling,
Open Channel Infested by Submerged Weeds

1. Introduction

Open channels are still the major conveyers to
deliver water to the agricultural lands allover the
world. Egypt is no exception from this fact where
33,000 km length of canals supplies irrigation wa-
ter to the cultivated lands. However, the drained
water is collected in Egypt through 16,000 km
length of open drains. The main task and respon-
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sibility of the engineers is to operate these channels
at the highest possible efficiency. However, the
presence of aquatic weeds in irrigation channels
causes many problems such as water velocity re-
duction, water level rising, preventing water from
reaching canals’ ends, decrease water flow, ..etc.

Several researchers have investigated the hy-
draulic efficiency of open channels infested by
aquatic weeds. The research community in this
field divides the studies according to the type of
weeds (or their simulators) and their impact on
the roughness as rigid or flexible roughness stu-
dies. For the sake of not making this introduction
very long, only the most recent literature will be
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described in this section.

Regarding the characteristics of flow in open
channels with rigid roughness, Nagy and Watanabe
(1999) investigated, through experimental and
numerical studies, the tractive shear stress in a
movable bed of open channels covered with non-
submerged rigid vegetation. In this study, the ve-
getation was simulated by vertical rigid cylinders
of bamboo sticks with diameter of 0.3 cm and
arranged in a staggered shape on the sandy bed.
The total stress as well as the tractive shear stress
was obtained from the experimental results. In
addition, the threshold movement of particles was
experimentally observed. Utilizing the experi-
mental data, the authors developed a mathema-
tical relation between the total shear stress and
the tractive shear stress within the vegetation zone.
Through these analyses, the effect of vegetation
density on the critical shear stress values was pro-
foundly assessed. On the other hand, the authors
presented a numerical model based on the fluid
dynamics equations for no-uniform two dimen-
sional flows. The authors concluded that the
developed model was a powerful tool to estimate
the surface water levels, mean cross section veloc-
ity, and drag force due to existence of vegetation
and tractive bed shear stress along the channel.
Later Nagy and Watanabe (2000) investigated
the incipient motion at the bottom of streams co-
vered with rigid vegetation. Three patterns of uni-
form size bed material were experimentally stu-
died. Two types of flume experiments were carri-
ed out for non-uniform and uniform flow con-
ditions. Three densities of long non-submerged
vegetation plants were alternatively simulated.
Similar to the authors’ study presented in 1999,
the vegetation in the current study (2000) was
simulated by vertical rigid cylinders of bamboo
sticks with a diameter of 0.3 cm and arranged in
a staggered shape on the sandy bed. Utilizing the
various experiments’ data, a new expression for
the boundary shear stress ratio was developed
using the linear regression analysis. The authors
showed that the increase of vegetation density at
the bottom of streams caused a decrease in the
ratio of tractive stress to the total applied stress.
In addition, the authors developed and presented

a modified shield’s diagram for incipient motion
in streams with rigid vegetation. Finally, the au-
thors presented analytical expression for the criti-
cal boundary stress considering the vegetation
density.

Regarding the characteristics of flow in open
channels with flexible roughness, El-Samman
(1995) studied, experimentally, the effect of sub-
merged weeds’ distribution over the wetted peri-
meter and weeds density on the characteristics of
trapezoidal vegetated channels. Throughout this ex-
tensive experimental work, the author has reached
a general conclusion which was the significant
impacts of the submerged weeds’ distribution and
densities’ variations on the flow capacity, canal
efficiency, channel maintenance, and head loss. In
addition, the author of this study developed an
empirical mathematical formula describing the
relationship between the equivalent Manning’s
roughness and the product of the average velocity
and hydraulic radius. Finally and utilizing all the
collected data from the experimental works, the
author presented the effect of submerged weeds
(distribution and density) on the water flow re-
duction using empirical mathematical formula-
tions. In 1999, El-Samman continued his line of
research by conducting a study that involved
many experimental works to investigate the effect
of aquatic weeds cutting on the water surface pro-
file, velocity distribution, and hydraulic efficiency
of open channels. Throughout the extensive ex-
perimental and statistical analyses efforts, the au-
thor concluded that the presence of aquatic weeds
increases the channel! water surface slope and the
hydraulic efficiency of the channel was reduced
with the reduction of weeds’ height by cutting. In
addition, the author stated that the aquatic weeds
were responsible for the non-uniformity of the
flow. Finally, the author reached a general con-
clusion that the control of aquatic weeds by cut-
ting to reduce their heights was not a useful method
to improve the hydraulic efficiency of channels.

It is quit clear from the literature mentioned
previously that the hydraulic efficiency of open
channel with aquatic weeds infestation has been
extensively investigated throughout experimental
work. However, no modeling efforts were per-
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formed to simulate the behavior of water surface
profile of open channels infested by submerged
weeds for the various weeds densities and dis-
tributions. In addition, no efforts were performed
to model the prediction of the water surface pro-
file behavior when the distribution and densities
of aquatic weeds change.

Artificial intelligence has proven its capability
in simulating and predicting the behavior of the
different physical phenomena in most of the engi-
neering fields. Artificial Neural Network (ANN)
is one of the artificial intelligence techniques that
has been utilized in civil engineering in general
and in the water field area specifically. Several
researchers have incorporated ANN technique in
various scientific disciplines. Tahk and Shin
(2002) presented a study on the fault diagnosis of
Roller-Shape using frequency analysis of tension
signals and Artificial Neural Networks (ANN)
based approach in a web transport system. Spec-
ifically, the authors suggested a new diagnosis
algorithm to detect the effective rollers based on
the frequency analysis of web tension signals.
Throughout their study, the authors utilized the
characteristics features of tension signals (RMS,
Peak value, and Power spectral density) to train
an ANN that classified the roller condition into
three groups (normal, warning, and faulty condi-
tions). The results of this study showed that the
suggested diagnosis algorithm could be success-
fully used to identify the effective rollers as well
as to diagnose the degree of the defect of those
rollers. Park and Seo (2003) explored a new Life
Cycle Assessment (LCA) methodology for the
product concepts by grouping products accord-
ing to their environmental characteristics and by
mapping product attributes into environmental im-
pact driver (EID) index. The relationship is stat-
istically verified by investigating the correlation
between total impact indicator and energy impact
category. Thereafter, the authors developed an
ANN model with back propagation to predict an
approximate LCA of grouping products in con-
ceptual design. The results of the ANN model
were compared with those of multiple regression
analysis. Finally the authors stated that the pro-
posed approach did not replace the full LCA but
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it would give some useful guidelines for the de-
sign of environmentally conscious products in con-
ceptual design phase.

Regarding water engineering field, several re-
searchers have incorporated ANN technique in
hydrology, groundwater, hydraulics, and reser-
voir operations to simulate their problems. Abdin
and Abdeen (2005) presented a study for predict-
ing the impact of subsurface heterogeneous hy-
draulic conductivity on the stochastic behavior
of well draw down in a confined aquifer using
Artificial Neural Networks. Several ANN models
were developed in this study to predict the un-
steady two dimensional well draw down and its
stochastic characteristics in a confined aquifer.
The results of Abdin and Abdeen (2005) study
showed that ANN method with less computa-
tional efforts was very efficiently capable of si-
mulating and predicting the stochastic behavior of
the well draw down resulted from the continuous
constant pumping in the middle of a confined
aquifer with subsurface heterogeneous hydraulic
conductivity. Chandramouli and Raman (2001)
developed a dynamic programming-based neural
network model for optimal multi-reservoir oper-
ation. In this developed model, the multi-reser-
voir operating rules were derived using a feed-
forward neural network from the results of three
state variables’ dynamic programming algorithm.
The authors applied the multi-reservoir system
called Parambikulam Aliyar Project in their study.
Comparison between the developed model against
first the regression-based approach used for de-
riving the multi-reservoir operating rules from
optimization results ; and second the single-reser-
voir dynamic programming-neural network model
approach showed an improved operating perfor-
mance. Abdeen (2001) developed a neural net-
work model for predicting flow characteristics in
irregular open channels. The developed model
proved that ANN technique was capable with
small computational effort and high accuracy of
predicting flow depths and average flow velocities
along the channel reach when the geometrical
properties of the channel cross sections were mea-
sured or vice versa. Kheireldin (1998) presented a
study to model the hydraulic characteristics of
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severe contractions in open channels using ANN
technique. The successful results of his study
showed the applicability of using the ANN ap-
proach in determining relationship between dif-
ferent parameters with multiple input/output prob-
lems. Tawfik et al. (1997) showed the applicabili-
ty of using the ANN technique for modeling
rating curves with hysteresis sensitive criterion.
Ramanitharan and Li (1996) utilized ANN with
back-propagation algorithm for modeling ocean
waves which were represented by wave height
and period. This study showed the applicability
of forecasting the ocean waves with different neu-
ral networks for wave height and period. Minns
(1996) investigated the general application of
ANN in modeling rainfall runoff process. The
results of the numerical experiments reported in
his study indicated that ANN was capable of iden-
tifying usable relationships between runoff dis-
charges and antecedent rainfall depts. Solomatine
and Toorres (1996) presented a study of using
ANN in the optimization loop for the hydrody-
namic modeling of reservoir operation in Ven-
ezuela. The authors stated that the ANN repre-
sentation of the hydrodynamic/hydrologic model
could easily allow the incorporation of the vari-
ous modeling components into the optimization
routines.

It is quit clear from the previously presented
literature that ANN technique showed its appli-
cability in simulating and predicting the behavior
of different hydraulic problems. Therefore, the
presented study is aimed towards utilizing the
ANN technique in modeling the impact of sub-
merged aquatic weeds on the water surface profile
behavior in open channels.

2. Problem Description

The current paper investigates the problem of
the existence of submerged aquatic weeds in open
channels and their impacts on the flow behavior
in these channels. Specifically, the current study
presented in this manuscript utilizes the ANN
technique in developing a simulation and predic-
tion model for the flow behavior in open channels
infested by submerged aquatic weeds. Since the uti-
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lization of the ANN approach in open channels
infested by submerged aquatic weeds is consider-
ed relatively new, the current study develops the
ANN model for an experimental data as a proof
of concept that can be generalized later for field
application. The experimental data used in the
current study for developing the ANN model is
the one reported by Osman, 2003 in his Master
Thesis. Detailed description about this experi-
mental work is presented in the following section.

2.1 Experimental work

The experimental work performed by Osman,
2003 for his Master Thesis work was carried out
in the hydraulics laboratory of the Channel Main-
tenance Research Institute within the National
Water Research Center— El-Kanater ElI-Khairiah—
Egypt. The flume used in the experimental work
is a reinforced concrete flume and has a total
length of 22.10 m. The operating system of this
flume is re-circulated through an underground
reservoir, with dimensions (24.10 m long, 1.75 m
wide, and 1.5 m height) to supply the flume with
water. The layout of the flume and all the hy-
draulic structures within the experiment can be
shown from Figure [ as they were presented in
the Master Thesis of Osman, 2003. On the other
hand, the underground reservoir is shown in Fig-
ure 2. The inlet part of the flume and the basin
are shown in Figure 3. The dimensions of the
inlet part are 4.52 m long, 1.63 m wide, and 1.16
m height besides two vertical reinforced concrete
walls to decrease any excessive energy by the jets
diffusion vertically through a short distance. How-
ever the basin dimensions are 3.0 m long, 1.63 m
wide, and 1.21 m height besides a ramp with 3:1
slope is allocated downstream the two vertical
walls. On the other hand, the dimensions of the
horizontal trapezoidal part of the flume are 16.22
m long, 0.6 m wide, 0.42 m maximum depth, and
1:1 side slope. Figure 4 shows the trapezoidal
cross section while the flume is covered by 3 mm
plastic sheets representing the submerged aquatic
weeds. This experimental flume was designed, as
mentioned previously, to simulate most of Egyp-
tian canals infested by weeds as stated by Osman,
2003 in his Thesis. The reader is referred to the
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Fig. 2 Underground Reservoir for the experimental
flume

Osman’s study presented in 2003 for complete
details about all experiment’s description, mate-
rials, and measuring tools.

As shown in Figure 1, the sluice gate is fixed
at the downstream end of 4 m bed segment from  Fig. 4 The flume trapezoidal cross section covered
the flume that is covered by the plastic roughness by the plastic sheets
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elements. During the experimental work of Osman,
2003, the author ran his experiments for the smooth
case first with various flow discharges and gate
openings. Thereafter he ran the experiment with
same flow discharges and gate openings pattern to
produce a gate upstream heading up for the water
surface profile that is higher than the smooth case.
The ANN models developed in the current study
investigates the prediction pattern for this partic-
ular case when the upstream gate water depths in
a vegetated channel are higher than the smooth
channel water depths for the same flow and gate
openings patterns.

2.2 Data categories utilized for the ANN

Throughout the experiments, various data in-
puts were used as a sensitivity analysis for the
water surface behavior in the vegetated channel.
Five discharges (37,34,31,28, and 251/s) and
five sluice gate openings (17,15,13,11, and 9 cm)
were used in the study presented by Osman, 2003
and they will also be utilized in the development
of the ANN model within the current presented
study. In addition, two weeds densities (D1 and
D2) were also used in the experimental program
representing the number of flexible roughness ele-
ments distributed per unit area. These two densi-
ties, D1=0.25 and D2=0.0625 No. of stem/cm?,
are also used for the development of the ANN
models through the current study. Throughout
the experimental works, the water surface profile
depths were measured along the flume length for
the various parameters (flow discharges, sluice
gate openings, and two weeds densities) mention-
ed previously. These water depths’ realizations
are the main outputs for the developed ANN
models within the current presented study.

3. Neural Network Structure

Neural networks are models of biological neu-
ral structures. Abdeen (2001) described in a very
detailed fashion the structure of any neural net-
work. Briefly, the starting point for most networks
is a model neuron as shown in Figure 5. This
neuron is connected to multiple inputs and pro-
duces a single output. Each input is modified by
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Fig. 5 Typical picture of a model neuron that exists
in every neural network

a weighting value (w). The neuron will combine
these weighted inputs with reference to a thresh-
old value and an activation function, will deter-
mine its output. This behavior follows closely the
real neurons work of the human’s brain. In the
network structure, the input layer is considered a
distributor of the signals from the external world
while hidden layers are considered to be feature
detectors of such signals. On the other hand, the
output layer is considered as a collector of the fea-
tures detected and the producer of the response.

4. Neural Network Operation

It is quit important for the reader to understand
how the neural network operates to simulate dif-
ferent physical problems. As described by Abdeen
(2001) the output of each neuron is a function of
its inputs (X;). In more details, the output (Y;)
of the jth neuron in any layer is described by two
sets of equations as follows :

Ui=2 (Xaw:;) (-
And
K'ZFM(UJ‘HLJ) (2)

For every neuron, j, in a layer, each of the i
inputs, X, to that layer is multiplied by a previ-
ously established weight, w;;. These are all sum-
med together, resulting in the internal value of
this operation, Uj. This value is then biased by
a previously established threshold value, #;, and
sent through an activation function, Fy. This
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Fig. 6 The sigmoid activation function used in most

of the designed networks

activation function can take several forms but
the most commonly used one is the Sigmoid func-
tion which has an input to output mapping as
shown in Figure 6. The resulting output, Yj, is
an input to the next layer or it is a response of
the neural network if it is the last layer. On the
other hand, other activation functions are com-
monly used by the researchers in this field such
as Step, Linear, Hyperbolic, and Gaussian func-
tions. In applying the Neural Network technique,
in this study, Neuralyst Software, Shin (1994),
was used.

5. Neural Network Training

The next step in neural network procedure as
described by Kheireldin (1998) is the training
operation. The main purpose of this operation is
to tune up the network to what it should produce
as a response. From the difference between the
desired response and the actual response, the error
is determined and a portion of it is back pro-
pagated through the network. At each neuron
in the network, the error is used to adjust the
weights and the threshold value of this neuron.
Consequently, the error in the network will be
less for the same inputs at the next iteration. This
corrective procedure is applied continuously and
repetitively for each set of inputs and correspond-
ing set of outputs. This procedure will decrease
the individual or total error in the responses to
reach a desired tolerance. Once the network re-
duces the total error to the satisfied limit, the
training process may stop. The error propagation
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in the network starts at the output layer with the
following equations :

wi=wi; + LR (e;X;) (3)
And,
e;=Y;(1-Y)) (di— Y}) (4)

Where, w;; is the corrected weight, wi; is the
previous weight value, L R is the learning rate, ¢;
is the error term, X; is the i input value, Y is the
ouput, and d; is the desired output.

6. Simulation Cases

To investigate and model the water surface
profile in open channels infested by aquatic weeds
using ANN technique, the experimental work of
Osman, 2003 was utilized in the current study
representing the Egyptian open channels. To fully
understand how the water surface profile in open
channels infested by aquatic weeds can be affected
by the weeds’ density, flow discharges, and sluice
gate openings, several simulation cases are consi-
dered in this study. These simulation cases can
be divided into two groups. The first group simu-
lates and models the impact of the different flow
discharge values on the water surface profile in
the experimental flume infested by plastic weeds.
While the second group simulates and models the
impact of sluice gate openings on the water sur-
face profile in the experimental flume. For both
investigated groups, two weeds densities, as men-
tioned earlier, are considered within the current
presented study.

7. Neural Network Design

To develop a neural network in order to simu-
late the impact of the aquatic weeds existence in
open channels on the water surface profile with-
in the experimental flume mentioned previously,
first, input and output variables have to be deter-
mined. Input variables are chosen according to
the nature of the problem and the type of data
that would be collected in the field if this were a
real field experiment. To clearly specify the key
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Table 1 Key input and outputs variables for the two neural network simulation groups

First Different Flow .Flow Distance Weeds’ Sluice'Gate Water Depth
Group Discharges Discharge along the density openings along the
(1/s) flume (m) (cm) flume (cm)
Second Different Sluice 'Flow Distance Weeds’ Sluice.Gate Water Depth
Group Gate Openings Discharge along the density openings along the
(1/s) flume (m) (cm) flume (cm)
input variables for each neural network simu-
lation groups and their associated outputs, Table Input # 1 Output # 1
1 is designed to summarize all neural network key
input variables and outputs for these two groups.
As mentioned previously, two weeds densities  Input#2 Output #2
have been utilized for the development of the
different ANN models in the current research. In Hidden layer  Hidden layer
3neurons 3 neurons

addition, two ANN models have been designed
for interpolation and extrapolation data sets.

Regarding the different flow discharges group,
the interpolation ANN model considers the neu-
ral network training for @=25,28,34, and 37 (I/s)
and the prediction and testing processes for the
developed model are for Q=31 (I/s). For the train-
ing and testing processes, the sluice gate opening
is kept constant at 2=9.0 (cm). The extrapola-
tion ANN model, for this group of simulations,
considers the network training for @=25,28,31,
and 34 (1/s) and the prediction and testing pro-
cess for the developed model are for Q=37 (I/s);
and the sluice gate opening is kept constant at
9.0 (cm).

Regarding the different sluice gate openings
simulation group, the interpolation ANN model
considers the network training for 9,11, 15, and 17
(cm) and the prediction and testing process for
the developed model are for =13 (cm) ; and the
flow discharge is kept constant at 34 (I/s). While
the extrapolation ANN model considers the net-
work training for 9,11,13, and 15 (cm) and the
prediction and testing process for the developed
model are for ¢=17 (cm) : and the flow dis-
charge is kept constant at 31 (I/s). These two
sub-simulation cases are developed to prove the
concept of using ANN models for investigating
the water surface profile in open channels infested

Fig. 7 General schematic diagram of a simple
generic neural network

by aquatic weeds that considers all data possibil-
ities. It is probably worth mentioning here that
two ANN models are developed for each inter-
polation and extrapolation case for the two simu-
lation groups utilizing the two weeds’ densities
mentioned previously.

On the other hand, if the ANN models were to
be applied to a field application, not laboratory
experiment, the type of input data needs to be
collected would be the same as they are listed in
Table 1. Similarly, the set of output variables
required for the training of the ANN would also
need to be collected and reported as they were
measured in the field corresponding to their input
variables conditions.

Several neural network architectures are de-
signed and tested for each of the sub-simulated
cases investigated in the current study to finally
determine the best network model to simulate,
very accurately, the water surface profile in open
channels infested by aquatic weeds based on mini-
mizing the Root Mean Square Error (RMS-Er-
ror). Figure 7 shows a schematic diagram for a
generic neural network.

Due to the extreme difficulty of the investigated
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Table 2 The developed neural network models for all the simulated cases
Simulati Sub-simulati Weed No. of . .
rmutation Hersimuiation ee. ° o0 No. of neurons in the different layers
case case Density layers
lst 2nd 3rd 4th
Input | . . . .
npu hidden | hidden | hidden | hidden Output

. 0.25 5 4 4 4 4 - 1
Interpolation

Different Flow 0.0625 6 4 6 6 6 6 1

. T

Discharges ) 0.25 5 4 4 4 4 - 1
Extrapolation

| 0.0625 5 4 4 4 4 - i

| o2 5 4 9 9 8 - 1
Interpolation

Different Sluice 0.0625 5 4 10 10 10 - 1

Gate Openings ) 0.25 5 4 6 6 6 - 1
Extrapolation

0.0625 5 4 6 - 1

problem in the current presented study, one spec-
ific neural network is designed and developed for
each sub-simulation case (Interpolation and Ex-
trapolation) among the two simulation cases for
the two main groups. Table 2. shows the final
neural network models for each sub-simulation
case and their associated number of neurons.

The input and output layers represent the key
input and output variables described previously
for each sub-simulation case. It is very important
to mention here that some of the developed models
incorporated the sigmoid activation function present-
ed in Figure 3, while other models utilized the
Hyperbolic activation function. This choice for
this activation function, in the different models’
development, was based on the power of this func-
tion in simulating the real nature of the water
surface profile in each case. The Sigmoid function
typically has a narrow region about zero wherein
the output will be roughly proportional to the
input, but outside this region the Sigmoid func-
tion will limit to full inhibition or full excitation,
Shin (1994). The Sigmoid function can be ex-
pressed mathematically as follows :

Fl)=—»>i— (5)

1+e™*

On the other hand, the Hyperbolic function is
shaped exactly as the Sigmoid one with the same
mathematical representation but it ranges from
—1 to +1 rather than from 0 to 1. Thus it has the
interesting property that there is inhibition near

0, but values at either extreme will be excited to
full level, but in opposite sense. In addition, the
Hyperbolic function can be considered as a switch
with an intermediate range where is can be dis-
criminating, Shin (1994) .

The training parameters of the various network
models developed in the current study for the
different sub-simulation cases can be described
according to their tasks as well as their values for
the different developed ANN models as follows :

Learning Rate (LR): determines the magni-
tude of the correction term applied to adjust each
neuron’s weights during training process. LR=1
for all developed ANN models.

Momentum (M): determines the “life time” of
a correction term as the training process takes
place. M=0.9 for all developed ANN models.

Training Tolerance (TRT): defines the per-
centage error allowed in comparing the neural
network output to the target value to be scored as
“Right” during the training process. TRT=0.01
for all developed ANN models.

Testing Tolerance (TST): it is similar to Train-
ing Tolerance, but it is applied to the neural net-
work outputs and the target values only for the
test data. TST=0.01 for all developed ANN models.

Input Noise (IN): provides a slight random
variation to each input value for every training
epoch. IN=0 for all developed ANN models.

Function Gain (FG): allows a change in the
scaling or width of the selected function. FG=1
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for all developed ANN models.

Scaling Margin (SM): adds additional head-
room, as a percentage of range, to the rescaling
computations used by Neuralyst Software, Shin
(1994), in preparing data for the neural network
or interpreting data from the neural network.
SM=0.1 for all developed ANN models.

8. Results and Discussion

As described previously, several ANN models
were developed for all the simulated cases inves-
tigated within the current study. The results and
the prediction power of the developed ANN models
in simulating the water surface profile in the
studied flume that is infested by aquatic weeds are
presented in a detailed fashion in the following
sections according to their simulation group.

8.1 Different flow discharges

As clearly stated previously, this simulation
group tackles the issue of the impact of different
flow discharges on the water surface profile in
the flume that is infested by aquatic weeds. The
amount of data utilized for the ANN model train-
ing was described in section 7, and therefore, the
current section presents the results of the testing
and prediction processes for these models regard-
ing the interpolation and extrapolation models as
well as the two weeds densities.

8.1.1 Interpolation sub-simulation case

Two weeds densities have been considered for
this sub-simulation case. Figure 8 shows the test-
ing and prediction results for the developed ANN
model, where its layers structure is presented in
Table 2, for weeds density equals 0.25 for the
interpolation case. Specifically, this figure shows
comparison between the water surface profile from
experimental data, reserved for testing the devel-
oped ANN model, and the water surface profile
computed using the developed ANN model. In
addition, the percentage relative errors between
the experimental and ANN computed water depths
data are presented in this Figure. These results
show that the ANN model is successful in pre-
dicting the experimental data with maximum per-
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centage relative error equals to 3%. This high
accuracy in the performance of the developed
ANN model shows how powerful the ANN tech-
nique in simulating the water surface profile in
flumes infested by aquatic weeds for this specific
density (0.25). On the other hand, Figure 9 shows
the same series of results for weeds density equals
0.0625. It can be easily shown from the compari-
son between the experimental data and the ANN
model’s results as well as the percentage relative
errors, presented in this Figure, that the devel-
oped ANN model is quit successful in simulating
the water surface profile in the investigated flume
with aquatic weeds infestation.

8.1.2 Extrapolation sub-simulation case

Full description about this simulation case was
presented in section 7 of the current manuscript
as well as the data categories utilized for each of
the training and testing processes. In addition, the
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architecture of the ANN, designed for this case, is
presented previously in Table 2. Similar to what
was mentioned for the interpolation case; two
weeds densities have been considered for this
extrapolation case. Figure 10 shows the compari-
son between the developed ANN model results
and corresponding experimental data as well as
the percentage relative errors between them for
weeds density equals 0.25. The results presented
in this figure shows that the maximum percentage
relative error was less than 4% which indicates
directly the high accuracy of the developed ANN
model in simulating the water surface profile in
the investigated flume. Regarding the weeds den-
sity 0.0625, Figure 11 shows the comparison re-
sults mentioned previously associated with the
percentage relative errors. Again, for this case of
weeds density, the maximum relative error be-
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tween the developed ANN model and experi-
mental data was less than 3% which also indicates
that the developed ANN model was very success-
ful in simulating the physical behavior of the
water surface profile in the studied flume that was
infested by aquatic weeds.

8.2 Different sluice gate openings

As clearly stated previously, this simulation
group tackles the issue of the impact of different
sluice gate openings on the water surface profile
in the flume that is infested by aquatic weeds. The
amount of data utilized for the ANN model train-
ing and testing was described in details in section
7, and therefore, the current section presents the
results of the testing and prediction processes for
these models regarding the interpolation and ex-
trapolation models as well as the two weeds den-
sities.

8.2.1 Interpolation sub-simulation case

Two weeds densities have been considered for
this simulation case. Figure 12 shows the results
of the comparison between the developed ANN
model and the corresponding experimental data
as well as the percentage relative errors between
them for weeds density equals 0.25. The maximum
relative error presented in this figure was less than
10% which indicates accurate trust in the devel-
oped ANN model in simulating the water surface
behavior in the investigated problem. Despite the
fact that this error was more than what was com-
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puted for the flow discharges group of simula-
tions, but it is still considered small errors consi-
dering the impact of extensive aquatic weeds ex-
istence on changing the water depths along the
investigated flume. On the other hand, Figure 13
shows the comparison results between the devel-
oped ANN model and experimental data as well
as their associated percentage relative errors for
weeds density equals 0.0625. The results presented
in this figure shows that the maximum percentage
relative error was less than 5% which directly
indicates that the developed ANN model for this
case with 0.0625 weeds density was very success-
ful in simulating the water depths changes within
the investigated flume. It is probably worth men-
tioning here that the case of extensive weeds
density (0.25 weeds density) results in less accu-
rate prediction for the developed ANN compared
with the small weeds density case (0.0625 weeds
density). This finding can be directly reasoned to
the impact of more weeds on changing the water
depths along the flume.

8.2.2 Extrapolation sub-simulation case

Full description about this simulation case was
presented in section 7 of the current manuscript
as well as the data categories utilized for each of
the training and testing processes. In addition,
the architecture of the ANN, designed for this
case, is presented previously in Table 2. Similar to
what was mentioned for the interpolation case ;
two weeds densities have been considered for this
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extrapolation case. Figure 14 shows the compari-
son between the developed ANN model results
and the corresponding experimental data as well
as the percentage relative errors between them for
weeds density equals 0.25. The results presented
in this figure shows that the maximum percentage
relative error was less than 3.5% which indicates
directly the high accuracy of the developed ANN
model in simulating the water surface profile in
the investigated flume. Regarding the weeds den-
sity 0.0625, Figure 15 shows the comparison re-
sults between the developed ANN model and the
corresponding experimental data associated with
the percentage relative errors. For this case of weeds
density, the maximum percentage relative error
between the developed ANN model and experi-
mental data was less than 5% which also indicates
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that the developed ANN model was very success-
ful in simulating the physical behavior of the
water surface profile in the studied flume that was
infested by aquatic weeds.

9. Summary

The majority of the Egyptian surface water
canals suffer from the infestation of submerged
aquatic weeds. The existence of these weeds causes
lots of problems for the hydraulic performance of
these channels. Specifically, the water surface pro-
file and subsequently the water distribution sys-
tem within the Egyptian irrigation network are
very much affected by these aquatic weeds exist-
ence.

Lots of experimental work was performed to
investigate and measure the impacts of these weeds
existence on the hydraulic performance of the vari-
ous open channels in Egypt. On the other hand,
the mathematical modeling efforts for simulating
these impacts are still very limited. However, the
modeling approach has proven its capabilities in
providing very useful information and simulating
various physical phenomena. Specifically, the Ar-
tificial Neural Networks (ANN) has been re-
corded as a very powerful modeling technique
and simulation process in predicting the behavior
of different engineering systems.

The current study was aimed towards utilizing
the ANN technique in investigating the impacts of
submerged aquatic weeds existence on the water
surface profile in an experimental flume. Since the
implementation of the ANN technique in study-
ing the hydraulics’ behavior of open channels,
infested by submerged aquatic weeds, does not
exist in the literature, the current study was di-
rected towards proving the concept of utilizing
this ANN in an experimental flume that is de-
signed to simulate the Egyptian channels that are
infested by aquatic weeds. Specifically, the ex-
perimental case data utilized in the current study
considers several flow discharges that are similar
to the ones for smooth case (channel without
aquatic weeds infestation). This particular flow
case results in a heading up for the water surface
profile upstream the sluice gate within the experi-

Mostafa A. M. Abdeen

mental flume more than the smooth channel case.

10. Conclusion

Several simulation cases were considered in
the current study. Specifically, different flow dis-
charges and sluice gate openings are considered
as the two main simulation groups. In addition,
two weeds densities were utilized for these two
simulation groups. Different ANN models were
developed in the current study for the various in-
vestigated simulation cases. Part of the experi-
mental data was utilized for the training process
of the developed ANN models ; however, the rest
of the data was used for testing the prediction
power of the developed models.

The results of the various developed ANN
models showed that ANN technique was very ac-
curate and successful in simulating the water sur-
face profile in the investigated flume with the
existence of submerged aquatic weeds with two
different densities. This conclusion is considered
very encouraging for the scientific community to
utilize the ANN approach in predicting the im-
pacts of submerged aquatic weeds on the hydrau-
lic performance of the Egyptian open channels
within the irrigation and drainage networks. In
addition, the implementation of the ANN con-
cepts and models is foreseen to provide the irri-
gation engineers with very useful information re-
garding the direct impacts of the aquatic weeds
infestation on the hydraulic performance of open
channels with almost no cost. This information is
considered very essential to the distribution and
design irrigation engineers for their future water
distribution plans along the different irrigation
channels.
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