• 제목/요약/키워드: Hybrid-power

검색결과 2,333건 처리시간 0.038초

출력분기 기반 플러그인 하이브리드 전기자동차의 동력전달 시스템 특성 분석 (Analysis of Powertrain Characteristics for Output Split Type Plug-in Hybrid Electric Vehicle)

  • 김정민
    • 한국자동차공학회논문집
    • /
    • 제23권1호
    • /
    • pp.112-121
    • /
    • 2015
  • In this paper, powertrain of output split type plug-in hybrid electric vehicle is analyzed for the operation range of speed, torque, and power. First, it is assumed that the efficiency of motor is 100%. And, the speed and torque equations are derived based on the lever analogy. With the above equations, the simulations are performed for the powertrain of output split type plug-in hybrid electric vehicle. From the simulation results, it is found that the output torques of EV1 and series modes are larger than the EV2 and power split modes' ones. It means the EV1 and series modes can be used for the rapid acceleration. But the EV1 and series modes can be used only the velocity of under the 120 km/h. It is because the motor reaches its maximum speed when the velocity is over the 120 km/h for the EV1 and series modes. When the engine is turned on, the engine power is transmitted through the two motors. But, the power split mode shows the power split of engine at the output shaft, and it has the point of zero motor power. Thus, the transmission efficiency of the power split mode can be higher than the series mode's one, it the motor efficiency is considered.

풍력-연료전지 하이브리드 시스템 출력의 동특성 분석 (Dynamic performances of output power of wind turbine and fuel-cell hybrid system)

  • 문대성;김윤성;서재진;원동준;박영호;문승일
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2007년도 제38회 하계학술대회
    • /
    • pp.545-546
    • /
    • 2007
  • A hybrid system that uses a parallel combination of wind turbine and fuel cell is modeled. Wind energy source is characterized by its intermittent and variable nature. The output power generated by the fuel cell is stable and can be properly controlled. Therefore, fuel cell system can be added to the wind turbine system for the purpose of ensuring continuous power flow. Fuel cell helps to compensate power and regulate the frequency in power system. Simulation results show the effect of the hybrid system on power regulation. The excess power generated by the wind turbine was directed to an electrolyzer to generate hydrogen and the power deficit was compensated by the fuel cell.

  • PDF

시간체공 드론 적용을 위한 하이브리드 동력시스템 연구 (A Study on Hybrid Power Generation System for Hour-Flight Drone)

  • 최명욱;양승진;임정민;문채주
    • 한국전자통신학회논문지
    • /
    • 제18권2호
    • /
    • pp.269-276
    • /
    • 2023
  • 본 연구에서는 1시간 이상 체공이 가능하도록 드론에 적용하기 위한 하이브리드 동력시스템을 제안한다. 이 동력시스템은 발전기에서 발생되는 교류를 다이오드 브리지 회로를 통해 직류로 변환하여 배터리를 충전시키고 동력시스템의 높은 제어성능을 얻기 위하여 분리된 셀을 갖는 배터리시스템을 사용한다. 본 논문에서는 부하별 연비와 출력을 분석하였으며, 또한 선정된 발전기의 성능을 연구하였다. 제안된 하이브리드 동력시스템을 장착한 드론은 중량 대비 출력 비율이 0.82로 계산되었으며, 비행시간은 4,179초 동안 비행하였다.

브이용 파력발전시스템의 발전특성 (Generation Characteristic of WEC for Buoy)

  • 오진석;곽준호;배수영;정성영;이지영
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권8호
    • /
    • pp.1123-1128
    • /
    • 2008
  • Marine facilities like buoy, lighthouse are operated with stand alone power supply system. This power system can consist of a stand-alone type power system such as PV(Photovoltaic) system, wave system or hybrid system which is not cooperated with a commercial power system. Generally, PV power system for marine facilities can not supply a sufficient power to buoy, because it is so influenced from weather condition. For solving this problem the hybrid power system with PV and wave is studied on a various area, that is why a hybrid power system is requires to overcome these problems. This paper will describe a generation characteristic of WEC(Wave Energy Converter) for buoy, and an AFS(Anti-Fouling System) influence on WEC.

자기회귀모델과 뉴로-퍼지모델로 구성된 하이브리드형태의 일별 최대 전력 수요예측 알고리즘 개발 (Development of Daily Peak Power Demand Forecasting Algorithm with Hybrid Type composed of AR and Neuro-Fuzzy Model)

  • 박용산;지평식
    • 전기학회논문지P
    • /
    • 제63권3호
    • /
    • pp.189-194
    • /
    • 2014
  • Due to the increasing of power consumption, it is difficult to construct accurate prediction model for daily peak power demand. It is very important work to know power demand in next day for manager and control power system. In this research, we develop a daily peak power demand prediction method based on hybrid type composed of AR and Neuro-Fuzzy model. Using data sets between 2006 and 2010 in Korea, the proposed method has been intensively tested. As the prediction results, we confirm that the proposed method makes it possible to effective estimate daily peak power demand than conventional methods.

풍력-디젤 하이브리드 발전 시스템의 디젤 출력 배분 알고리즘 개발 (A Diesel Power Sharing Algorithm for Wind-Diesel Hybrid Electric Power Generation Systems)

  • 남용윤;이근호;한정우;박영준;이영수
    • 한국생산제조학회지
    • /
    • 제20권5호
    • /
    • pp.673-678
    • /
    • 2011
  • For the wind-diesel hybrid electric power generation system equiped with two diesel generators, the diesel power sharing is studied analytically and a power sharing technique of less fuel consumption is developed. Based on the technique, as example, a diesel power sharing algorithm is suggested for two diesel generators of capacity 500Kw(200Kw+300Kw).

Power Distribution and Coordinated Control for a Power Split Hybrid Electric Bus

  • Wang, Feng;Zhong, Hu;Ma, Zi-Lin;Mao, Xiao-Jian;Zhuo, Bin
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권4호
    • /
    • pp.593-598
    • /
    • 2008
  • The power distribution is proposed to determine the target operating points of the system components as the basis for maximal the efficiency of the overall system for a power split dual electric machine hybrid electric bus. The coordinated control is constructed on the basis of the power distribution. The basic coordinated control is implemented to satisfy the driver's power demand, in which both the dynamic characteristics of the engine and the dual electric machine are explicitly taken into account. Moreover, the improved coordinated control is suggested to suppress engine dynamic operation and rich fuel injection.

순간전압변동 보상 기능을 갖는 3상 하이브리드형 직렬 능동전력필터 (3-Phase Hybrid Series Active Power Filter with Instantaneous Voltage Fluctuations Compensation)

  • 한석우;최규하
    • 전력전자학회논문지
    • /
    • 제5권6호
    • /
    • pp.544-551
    • /
    • 2000
  • In this paper, 3-phase hybrid series active power filter for compensate current harmonics, voltage drop and unbalanced voltage in the network presented. The proposed system is implemented with a space vector modulation voltage source inverter and a high pass filter connected in parallel to the power system. Here the load is six-pulses thyristor rectifier. The phase angle detected in order to generation reference voltage at load terminal is synchronized with the positive sequence component of the unbalanced source by using symmetrical component transformation. The proposed system has an function harmonic isolation between source and load, voltage regulation, and unbalance compensation. Therefore, what the power system is improved quality, the source current is maintained as a nearly sinusoidal waveform and the load voltage is regulated with a rated voltage regardless of the source variation condition. To verify the validity of the proposed compensating system, the computer simulation and experiment are carried out.

  • PDF

A Matlab/Simulink-Based PV array-Supercapacitor Model Employing SimPowerSystem and Stateflow Tool Box

  • Hong, Won-Pyo
    • 조명전기설비학회논문지
    • /
    • 제28권12호
    • /
    • pp.18-29
    • /
    • 2014
  • This paper proposes the integration of photovoltaic (PV) and energy storage systems for sustained power generation. In this proposed system, whenever the PV system cannot completely meet load demands, the super capacitor provides power to meet the remaining load. A power management strategy is designed for the proposed system to manage power flows between PV array systems and supercapacitors (SC). The main task of this study was to design PV systems with storage strategies including MPPT with direct control and an advanced DC-link controller and to analyze dynamic model proposed for a PV-SC hybrid power generation system. In this paper, the simulation models for the hybrid energy system are developed using Matlab/Simulink, SimPowerSystems and Matlab/Stateflow tool. This is the key innovative contribution of the research paper. The system performances are verified by carrying out simulation studies using practical load demand profile and real weather data.

단위 역률을 갖는 대용량 하이브리드 멀티레벨 PWM 정류기 (High Power Hybrid Multilevel PWM Rectifier with Unity Power Factor)

  • 최남섭
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 B
    • /
    • pp.1187-1189
    • /
    • 2000
  • This paper presents a high power-hybrid multilevel PWM rectifier with unity power factor. The features and advantages of the proposed PWM rectifier can be summarized as follows; 1) It realizes the high power high voltage AC/DC power conversion. 2) It uses no transformer which is bulky and heavy, 3) It has hybrid structure so that switching devices can be effectively utilized, 4) It produces high quality AC current even in high power high voltage applications, 5) The input power factor remains unity by simple modulation index control. The multilevel rectifier is analyzed by using the circuit DQ transformation whereby the characteristics and control equations are obtained.

  • PDF