• Title/Summary/Keyword: Hybrid polymer

Search Result 626, Processing Time 0.022 seconds

Synthesis of High Functionalized Anion Exchange Fibers Using Hybrid Polyolefine by $\gamma-Ray$ Mutual Radiation (방사선 동시조사법을 이용한 고관능성 Hybrid Polyolefine 음이온교환섬유의 합성)

  • Cho In-Hee;Kwak Noh-Seok;Kang Phil-Hyun;Nho Young-Chang;Hwang Taek-Sung
    • Polymer(Korea)
    • /
    • v.30 no.3
    • /
    • pp.217-223
    • /
    • 2006
  • Ion exchange fibers, high functionalized onto hybrid polyolefine fiber's surface, were synthesized by $\gamma-ray$ mutual radiation. Degree of grafting (DG) of copolymer increased with increasing GMA monomer concentration and the maximum rate of DG was 355% at 50 GMA. The graft reaction occurred in polar solvent and DG was 190% maximum value in $1.0\times10^{-3}$ Mohr's salt and 0.1 M sulfuric acid, respectively. The amination for graft copolymers varied depending on amine reagents, and the reactivity for copolymers was highest for methylamine, and that of triethylamine lowest. It was shown that water uptake and ion exchange capacities increased with increase in the rate of amination while surface area decreased rapidly as proceeding for graft reaction and amination.

Effect of Various Cross-linking Types on the Physical Properties in Carbon Black-Filled Natural Rubber Compound (천연고무 배합물에서 가교형태 변화가 물성에 미치는 영향)

  • Park, Byung-Ho;Jung, Il-Gouen;Park, Sung-Soo
    • Polymer(Korea)
    • /
    • v.25 no.1
    • /
    • pp.63-70
    • /
    • 2001
  • The objective of this study was to investigate the effect of cure type on the processing and physical properties under conditions of similar stress-strain properties. On the carbon black filled natural rubber(NR) based compound, the induction time decreased, but the cure rate became fast with increasing loading of sulfur donor agent. Tensile strength was little affected on the curing type. However, elongation generally decreased with increasing accelerator. Effect of cure type on the blow-out properties was followings: CV

  • PDF

Comparison of the Properties of Poly(lactic acid) Nanocomposites with Various Fillers: Organoclay, Functionalized Graphene, or Organoclay/Functionalized Graphene Complex (유기화 점토, 작용기화 그래핀 및 유기화 점토/작용기화 그래핀 복합체 등의 필러를 사용한 Poly(lactic acid) 나노 복합체의 물성 비교)

  • Kwon, Kidae;Chang, Jin-Hae
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.232-239
    • /
    • 2014
  • Poly(lactic acid)(PLA) nanocomposites containing various nanofillers were synthesized using the solution intercalation method. Organically modified bentonite clay (NSE), octadecylamine-graphene oxide (ODA-GO), and an NSE/ODA-GO complex were utilized as nanofillers in the fabrication of PLA hybrid films. PLA hybrid films with varying nanofiller contents in the range of 0-10 wt% were examined and compared in terms of their thermomechanical properties, morphologies, and oxygen permeabilities. Transmission electron microscopy (TEM) confirmed that most of the NSE and ODA-GO nanofillers were dispersed homogeneously throughout the PLA matrix on the nanoscale, although some agglomerate NSE/ODA-GO complex particles were also formed. Among the three nanofillers for PLA hybrid films, the NSE/ODA-GO complex showed the best improvement in film thermal stability. In contrast, NSE and ODA-GO exhibited the best improvement in tensile mechanical properties and oxygen barrier properties of the PLA hybrid films, respectively.

Preparation and Characterization of Sulfonated Poly(phthalazinone ether sulfone ketone) (SPPESK)/Silica Hybrid Membranes for Direct Methanol Fuel Cell Applications

  • Kim, Dae-Sik;Shin, Kwang-Ho;Park, Ho-Bum;Lee, Young-Moo
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.413-421
    • /
    • 2004
  • Sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK) membranes and sol-gel derived SPPESK/silica hybrid membranes have been investigated as potential polymer electrolyte membranes for direct methanol fuel cell (DMFC) applications. In comparison with the SPPESK membrane, the SPPESK/silica membranes exhibited higher water content, improved proton conductivity, and lower methanol permeability. Notably, the silica embedded in the membrane acted as a material for reducing the fraction of free water and as a barrier for methanol transport through the membrane. From the results of proton conductivity and methanol permeability studies, we suggest that the fractions of bound and free water should be optimized to obtain desirable proton conductivities and methanol permeabilities. The highly sulfonated PPESK hybrid membrane (HSP-Si) displayed higher proton conductivity (3.42 ${\times}$ 10$^2$ S/cm) and lower methanol permeability (4.15 ${\times}$ 10$\^$7/ $\textrm{cm}^2$/s) than those of Nafion 117 (2.54 ${\times}$ 10$^2$ S/cm; 2.36 ${\times}$ 10$\^$6/ $\textrm{cm}^2$/s, respectively) at 30$^{\circ}C$. This characteristic of the SPPESK/silica membranes is desirable for future applications related to DMFCs.

High Efficiency AMOLED using Hybrid of Small Molecule and Polymer Materials Patterned by Laser Transfer

  • Chin, Byung-Doo;Suh, Min-Chul;Kim, Mu-Hyun;Kang, Tae-Min;Yang, Nam-Choul;Song, Myung-Won;Lee, Seong-Taek;Kwon, Jang-Hyuk;Chung, Ho-Kyoon;Wolk, Martin B.;Bellmann, Erika;Baetzold, John P.
    • Journal of Information Display
    • /
    • v.4 no.3
    • /
    • pp.1-5
    • /
    • 2003
  • Laser-Induced Thermal Imaging (LITI) is a laser addressed patterning process and has unique advantages such as high-resolution patterning with over all position accuracy of the imaged stripes of within 2.5 micrometer and scalability to large-size mother glass. This accuracy is accomplished by real-time error correction and a high-resolution stage control system that includes laser interferometers. Here the new concept of hybrid system that complement the merits of small molecule and polymer to be used as an OLED; our system can realize easy processing of light emitting polymers and high luminance efficiency of small molecules. LITI process enables the stripes to be patlerned with excellent thickness uniformity and multi-stacking of various functional layers without having to use any type of fine metal shadow mask. In this study, we report a full-color hybrid OLED using the multi-layered structure consisting of small molecules and polymers.

Electrical Characteristics of Magnetic Tunnel Junctions with Different Cu-Phthalocyanine Barrier Thicknesses (Cu-Phthalocyanine 유기장벽 두께에 따른 스핀소자의 전기적 특성 변화 양상)

  • Bae, Yu-Jeong;Lee, Nyun-Jong;Kim, Tae-Hee
    • Journal of the Korean Magnetics Society
    • /
    • v.22 no.5
    • /
    • pp.162-166
    • /
    • 2012
  • V-I characteristics of Fe(100)/MgO(100)/Cu-phthalocyanine (CuPc)/Co hybrid magnetic tunnel junctions were investigated at different temperatures. Fe(100) and Co ferromagnetic layers were separated by an organic-inorganic hybrid barrier consisting of different thickness of CuPc thin film grown on a 2 nm thick epitaxial MgO(100) layer. As the CuPc thickness increases from 0 to 10 nm, a bistable switching behavior due to strong charging effects was observed, while a very large magenetoresistance was shown at 77 K for the junctions without the CuPc barrier. This switching behavior decreases with the increase in temperature, and finally disappears beyond 240 K. In this work, high-potential future applications of the MgO(100)/CuPc bilayer were discussed for hybrid spintronic devices as well as polymer random access memories (PoRAMs).

A Study on the Synthesis of Organic-Inorganic Hybrid Waterborne Polyurethane by Using Graft Type Siloxane Polyol (그래프트형 실록산 폴리올을 이용한 유-무기 하이브리드 수분산 폴리우레탄의 합성에 관한 연구)

  • Lim, Jae-Woo;Yim, Jin-Heong
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.569-574
    • /
    • 2009
  • Organic- inorganic hybrid waterborne polyurethane (PUD) is synthesized by using hybrid polyol consist of carbonate (PCD), ester (PCL), and siloxane (PDSBP) in order to enhance anti-scratch property of PUD film. The diameter of graft type PUD emulsion is bigger than that of linear type PUD due to the graft structure of hydrophobic siloxane chain. The glass transition temperature of linear type PUD increase and the decomposition temperature of linear type PUD decrease with the content of PCD polyol. While, the decomposition temperature of graft type PUD almost same with increasing PDSBP content. The anti-scratch property and pencil hardness of graft type PUD improves as adding PDSBP polyol in the hybrid polyol system. When 9 wt% of PDSBP polyol is mixed, PUD films shows excellent anti-scratch property (~3.3 N), and pencil hardness (> 9 H).

Physical characteristics of ceramic/glass-polymer based CAD/CAM materials: Effect of finishing and polishing techniques

  • Ekici, Mugem Asli;Egilmez, Ferhan;Cekic-Nagas, Isil;Ergun, Gulfem
    • The Journal of Advanced Prosthodontics
    • /
    • v.11 no.2
    • /
    • pp.128-137
    • /
    • 2019
  • PURPOSE. The aim of this study was to compare the effect of different finishing and polishing techniques on water absorption, water solubility, and microhardness of ceramic or glass-polymer based computer-aided design and computer-aided manufacturing (CAD/CAM) materials following thermocycling. MATERIALS AND METHODS. 150 disc-shaped specimens were prepared from three different hybrid materials and divided into five subgroups according to the applied surface polishing techniques. All specimens were subjected up to #4000 grit SiC paper grinding. No additional polishing has been done to the control group (Group I). Other polishing procedures were as follows: Group II: two-stage diamond impregnated polishing discs; Group III: yellow colored rubber based silicone discs; Group IV: diamond polishing paste; and Group V: Aluminum oxide polishing discs. Subsequently, 5000-cycles of thermocycling were applied. The analyses were conducted after 24 hours, 7 days, and 30 days of water immersion. Water absorption and water solubility results were analyzed by two-way ANOVA and Tukey post-hoc tests. Besides, microhardness data were compared by Kruskal-Wallis and MannWhitney U tests (P<.05). RESULTS. Surface polishing procedures had significant effects on water absorption and solubility and surface microhardness of resin ceramics (P<.05). Group IV exhibited the lowest water absorption and the highest microhardness values (P<.05). Immersion periods had no effect on the microhardness of hybrid ceramic materials (P>.05). CONCLUSION. Surface finishing and polishing procedures might negatively affect physical properties of hybrid ceramic materials. Nevertheless, immersion periods do not affect the microhardness of the materials. Final polishing by using diamond polishing paste can be recommended for all CAD/CAM materials.

Development of Estimated Model for Axial Displacement of Hybrid FRP Rod using Strain (Hybrid FRP Rod의 변형률을 이용한 축방향 변위추정 모형 개발)

  • Kwak, Kae-Hwan;Sung, Bai-Kyung;Jang, Hwa-Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.639-645
    • /
    • 2006
  • FRP (Fiber Reinforced Polymer) is an excellent new constructional material in resistibility to corrosion, high intensity, resistibility to fatigue, and plasticity. FBG (Fiber Bragg Grating) sensor is widely used at present as a smart sensor due to lots of advantages such as electric resistance, small-sized material, and high durability. However, with insufficiency of measuring displacement, FBG sensor is used only as a sensor measuring physical properties like strain or temperature. In this study, FRP and FBG sensors are to be hybridized, which could lead to the development of a smart FRP rod. Moreover, developing the estimated model for deflection with neural network method, with the data measured through FBG sensor, could make conquest of a disadvantage of FBG sensor - uniquely used for sensing strain. Artificial neural network is MLP (Multi-layer perceptron), trained within error rate of 0.001. Nonlinear object function and back-propagation algorithm is applied to training and this model is verified with the measured axial displacement through UTM and the estimated numerical values.

Chemical Sensors Using Polymer/Graphene Composite and The Effect of Graphene Content on Sensor Behavior (고분자/그래핀 복합재료의 센서 응용 및 그래핀 함량이 센서 거동에 미치는 영향)

  • Bae, Joonwon
    • Applied Chemistry for Engineering
    • /
    • v.31 no.1
    • /
    • pp.25-29
    • /
    • 2020
  • In this study, a polymer/graphene hybrid composite was prepared by a simple roll-method and a simple sensor was produced by a convenient surface engineering procedure. The sensor performance was examined and the effect of graphene content on the sensing behavior was monitored. A polymer (polydimethylsiloxane, PDMS) paste containing graphene powder was prepared by a three-roll apparatus and polymer/graphene hybrid composite was produced by a two-roll technique. The sensing medium, cyclodextrin (CD) was introduced by a convenient bio-conjugation method. The efficacy of surface modification was confirmed by FT-IR spectroscopy and the ohmic relation was observed on composite surfaces. An analyte (e.g., methyl paraben, MePRB) at a 10 nM concnetration could be detected. When the graphene loading was low, the sensor performance was relatively poor. This was attributed to the absence of graphene alignments, which were observed for the composites having a high graphene loading. This indicates that the sensor performance was influenced by physical alignments of the filler. This article can provide important information for future research on developing sensing devices.