• Title/Summary/Keyword: Hybrid geoid model

Search Result 11, Processing Time 0.019 seconds

Development of High-Precision Hybrid Geoid Model in Korea (한국의 고정밀 합성지오이드 모델 개발)

  • Lee, Dong-Ha;Yun, Hong-Sik
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.429-431
    • /
    • 2010
  • The hybrid geoid model should be determined by fitting the gravimetric geoid to the geometric geoid which were presented the local vertical level. Therefore, it is necessary to find firstly the optimal scheme for improving the accuracy of gravimetric geoid in order to development the high-precision hybrid geoid model. Through finding the optimal scheme for determining the each part of gravimetric geoid, the most accurate gravimetric geoid model in Korea will be developed when the EIGEN-CG03C model to degree 360, 4-band spherical FFT and RTM reduction methods were used for determining the long, middle and short-frequency part of gravimetric geoid respectively. Finally, we developed the hybrid geoid model around Korea by correcting to gravimetric geoid with the correction term. The correction term is modelled using the difference between GPS/Levelling derived geoidal heights and gravimetric geoidal heights. The stochastic model used in the calculation of correction term is the LSC technique based on second-order Markov covariance function. 503 GPS/Levelling data were used to model the correction term. The degree of LSC fitting to the final hybrid geoid model in Korea was evaluated as 0.001m ${\pm}0.054m$.

  • PDF

Determination of Precise Regional Geoid Heights on and around Mount Jiri, South Korea

  • Lee, Suk-Bae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.1
    • /
    • pp.9-15
    • /
    • 2018
  • Precise regional geoid heights on and around Mount Jiri were calculated and were compared to the KNGeoid14 (Korean National Geoid 2014) model. In this study, gravimetric geoid heights were calculated by using RCR (Remove-Compute-Restore) technique and then hybrid geoid heights were calculated by using the LSC (Least Square Collocation) method in the same area. In addition, gravity observation and GNSS(Global Navigation Satellite System) surveying performed in this study were utilized to determine gravimetric geoid heights and to compute hybrid geoid heights, respectively. The results of the study show that the post-fit error (mean and standard deviation) of hybrid geoid heights was evaluated as $0.057{\pm}0.020m$, while the mean and standard deviation of the differences were -0.078 and 0.085 m, respectively for KNGeoid14. Therefore, hybrid geoid heights in this study show more considerable progress than KNGeoid14.

The Precision Geoid Development based on Various Gravity Data (다양한 중력자료를 이용한 우리나라 정밀 지오이드 모델 개발)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun;Keun, Young-Min
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.35-37
    • /
    • 2010
  • To construct precision geoid model, the gravity data having equal distribution and quality is necessary. In previous study, however, the geoid model has low precision since the biased distributed gravity data and some unverified data has been used and the gap between land and ocean exists. Now, the airborne and land gravity data was collected by various survey and the ship-borne gravity data and altimeter data has been achieved. Therefore, the precision geoid model development would be possible. And the GPS/Leveling data obtained by NGII could be used for construction of hybrid geoid in Korea. In this study, the procedure of geoid construction based on airborne, land, ship-borne and altimeter data using Remove-Restore technique will be explained. And the verification of gravimetric geoid and hybrid geoid would be introduced.

  • PDF

Development of Hybrid Geoid using the Various Gravimetric Reduction Methods in Korea (다양한 중력학적 환산방법을 적용한 한국의 합성지오이드 개발)

  • Lee, Dong-Ha;Lee, Suk-Bae;Kwon, Jae Hyoun;Yun, Hong-Sic
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5D
    • /
    • pp.741-747
    • /
    • 2008
  • Nowadays, the accuracy of the geoid model has been improved through development of the combination model which was composed of traditional gravimetric geoid and geometric geoid by the GPS/leveling data in USA and Japan. It is a state of the art method in geoid modeling field that what so called hybrid geoid. In this paper, as a basic study to develop Korean hybrid geoid model, we studied gravimetric geoid solutions using three gravity reduction methods (Helmert's condensation method, RTM method and Airy-isostatic method) and evaluated the usefulness of each method in context of precise geoid. The gravimetric geoid model were determined by restoring the gravity anomalies (included TC) and the indirect effects were made from various reduction methods on the EIGEN-CG03C reference field. The results are compared with respect to the geometric geoid undulation determined from 498 GPS/leveling after LSC fitting. The results showed that hybrid geoid with RTM (Residual terrain model) reduction method was most accurate method and the value of the difference compared to geometric geoid was $0.001{\pm}0.053m$.

A Study on Geoid Model Development Method in Philipphines (필리핀 지오이드모델의 개발방안 연구)

  • Lee, Suk-Bae;Pena, Bonifasio Dela
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.6
    • /
    • pp.699-710
    • /
    • 2009
  • If a country has her geoid model, it could be determine accurate orthometric height because the geoid model could provide continuous equi-gravity potential surface. And it is possible to improve the coordinates accuracy of national control points through geodetic network adjustment considering geoidal heights. This study aims to find the best way to develop geoid model in Philippines which have similar topographic conditions as like Malaysia and Indonesia in Eastsouth asia. So, in this study, it is surveyed the general theories of geoid determination and development cases of geoid model in Asia and it is computed that the geoidal heights and gravity anomalies by spherical harmonic analysis using EGM2008, the latest earth geopotential model. The results show that first, the development of gravimetric geoid model based on airborne gravimetry is needed and second, about 200 GPS surveying data at national benchmark is needed. It is concluded that it is the most reasonable way to develop the hybrid geoid model through fitting geometric geoid by GPS/leveling data to gravimetric geoid. Also, it is proposed that four band spherical Fast fourier transformation(FFT) method for evaluation of Stokes integration and remove and restore technique using EGM2008 and SRTM for calculation of gravimetric geoid model and least square collocation algorithm for calculation of hybrid geoid model.

The Update of Korean Geoid Model based on Newly Obtained Gravity Data (최신 중력 자료의 획득을 통한 우리나라 지오이드 모델 업데이트)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun;Keum, Young-Min;Moon, Ji-Yeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.1
    • /
    • pp.81-89
    • /
    • 2011
  • The previous land gravity data in Korea showed locally biased irregular distribution. Especially, this problem was more serious in the mountainous area where the data density was significantly low. The same problem appeared in GPS/Levelling data thus the precision of the geoid could not be improved. From 2008, new gravity and GPS/Levelling data has been collected by the unified control point and survey on the benchmark project which were funded by the national geographic information institute. The newly obtained data has much better distribution and precision so that it could be used for update precision of geoid model. In this study, the new precision geoid has been calculated based old and new gravity data and this model showed 5.29cm of precision compared to 927 points of GPS/Levelling data. And the degree of fit and precision of hybrid geoid has been calculated 2.99cm and 3.67cm. The new gravimetric geoid has been updated about 27% over whole country. And it showed 42% of precision update due to collection of new gravity data on the Kangwon/Kyeongsang area which showed quite low distribution. In 2010, about 4,000 points of gravity and 300 points of GPS/Levelling data has been obtained by unified control and survey on benchmark project. We expect that new data will contribute to updating geoid precision and veri tying precision more objectively.

Development of Korean Geoid Model and Verification of its Precision (우리나라 지오이드 모델 구축 및 정밀도 검증)

  • Lee, Jisun;Kwon, Jay Hyoun;Baek, Kyeong Min;Moon, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.5
    • /
    • pp.493-500
    • /
    • 2012
  • The previous geoid model developed in early 2000s shows 14cm level of precision due to the problems on distribution, and quality of the land gravity and GPS/Leveling data. From 2007, the new land and airborne gravity data as well as GPS/Leveling data having high quality and regular distribution has been obtained. In 2011, a new gravimetric geoid model has been constructed with precision of 5.29cm which was improved about 27% comparing to the previous model. However, much more land gravity data has been collected at the control point, bench marks and triangulation points since 2010. Also, GPS/Leveling data having 10km spacing over whole country has been obtained through the project which is for the construction of new control points. In this study, new gravimetric geoid has been calculated based on the all available gravity data up to present. The geoid height shows the range from 18.05m to 32.70m over whole country and its precision is 5.76cm. The degree of fit and precision of hybrid geoid model are 3.60cm and 4.06cm, respectively. At the end, 3.35cm of the relative precision in 15km baseline has been calculated to confirm its practical usage. Especially, it has been founded that regional bias occurred at the Kangwon and coastal area due to problems on the leveling data. Also, some inland points show inconsistent large difference which needs to be verified by analyzing the unified control points results.

Height Datum Transformation using Precise Geoid and Tidal Model in the area of Anmyeon Island (정밀 지오이드 및 조석모델을 활용한 안면도 지역의 높이기준면 변환 연구)

  • Roh, Jae Young;Lee, Dong Ha;Suh, Yong Cheol
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.1
    • /
    • pp.109-119
    • /
    • 2016
  • The height datum of Korea is currently separated into land and sea, which makes it difficult to acquire homogeneous and accurate height information throughout the whole nation. In this study, we therefore tried to suggest the more effective way to transform the height information were constructed separately according to each height datum on land and sea to those on the unique height datum using precise geoid models and tidal observations in Korea. For this, Anmyeon island was selected as a study area to develop the precise geoid models based on the height datums land (IMSL) and sea (LMSL), respectively. In order to develop two hybrid geoid models based on each height datum of land an sea, we firstly develop a precise gravimetric geoid model using the remove and restore (R-R) technique with all available gravity observations. The gravimetric geoid model were then fitted to the geometric geoidal heights, each of which is represented as height datum of land or sea respectively, obtained from GPS/Leveling results on 15 TBMs in the study area. Finally, we determined the differences between the two hybrid geoid models to apply the height transformation between IMSL and LMSL. The co-tidal chart model of TideBed system developed by Korea Hydrographic and Oceanographic Agency (KHOA) which was re-gridded to have the same grid size and coverage as the geoid model, in order that this can be used for the height datum transformation from LMSL to local AHHW and/or from LMSL to local DL. The accuracy of height datum transformation based on the strategy suggested in this study was approximately ${\pm}3cm$. It is expected that the results of this study can help minimize not only the confusions on the use of geo-spatial information due to the disagreement caused by different height datum, land and sea, in Korea, but also the economic and time losses in the execution of coastal development and disaster prevention projects in the future.

A Study on the Accuracy of GNSS Height Measurement Using Public Control Points (공공기준점을 이용한 GNSS 높이측량 정밀도 분석 연구)

  • WON, Doo-Kyeon;CHOI, Yun-Soo;YOON, Ha-Su;LEE, Won-Jong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.24 no.2
    • /
    • pp.78-90
    • /
    • 2021
  • In order to construct a precision geoid, it has been diversified into land, sea, aviation, and satellite gravity measurement methods, and measurement technology has developed, making it possible to secure high-resolution, high-precision gravity data. The construction of precision geoids can be fast and conveniently decided through GNSS surveys without separate leveling, and since 2014, the National Geographic Information Institute has been developing a hybrid geoid model to improve the accuracy of height surveying based on GNSS. In this study, the results of the GNSS height measurement were compared and analyzed choosing existing public reference points to verify the GNSS height measurement of public surveys. Experiments are conducted with GNSS height measurements and analyzed precision for public reference points on coastal, border, and mountainous terrain presented as low-precision areas or expected-to-be low-precision in research reports. To verify the GNSS height measurement, the GNSS ellipsoid height of the surrounding integrated datum to be used as a base point for the GNSS height measurement at the public datum. Based on the checked integrated datum, the GNSS ellipsoid of the public datum was calculated, and the elevation was calculated using the KNGeoid18 model and compared with the results of the direct level measurement elevation. The analysis showed that the results of GNSS height measurement at public reference points in the coastal, border, and mountainous areas were satisfied with the accuracy of public level measurement in grades 3 and 4. Through this study, GNSS level measurement can be used more efficiently than existing direct level measurements depending on the height accuracy required by users, and KNGeoids 18 can also be used in various fields such as autonomous vehicles and unmanned aerial vehicles.

Accuracy Analysis of Ultra-high degree Earth Gravitational Model EGM2008 in South Korea (남한지역에서의 초고차항 중력장모델 EGM2008의 정확도 분석)

  • Huang, He;Yun, Hong Sic;Lee, Dong Ha;Jeong, Tae Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1D
    • /
    • pp.161-166
    • /
    • 2009
  • High-resolution, high-precision ultra-high degree earth gravitational model are significant for the development of geodesy, geophysics, geodynamics and oceanography. In this research, we introduces the ultra-high earth gravitational model EGM2008 recently announced by U.S. NGA, reviews the issues and status of the ultra-high degree gravitational model development, and analyzes the accuracy of the gravitational model in Korea. First, EGM2008 is compared with the gravitational model EGM96 and Korea high-precision hybrid geoid model KGEOID08. In addition, the absolute accuracy is evaluated by ellipsoid height and orthometric height of a satellite geodetic reference point. Overall, the results show a similar accuracy between EGM2008 and KGEOID08. Thus, EGM2008 will be helpful for the future development of regional geoid and analysis of global gravity field.