• 제목/요약/키워드: Hybrid electric vehicle (HEV)

검색결과 146건 처리시간 0.033초

하이브리드 전기 자동차(HEV) 기술동향 (HEV: A Review)

  • 나도백;신효순
    • 에너지공학
    • /
    • 제19권1호
    • /
    • pp.39-50
    • /
    • 2010
  • 하이브리드 전기자동차(HEV: Hybrid Electric Vehicle)와 플러그 인 하이브리드 전기자동차 (PHEV: Plug-in Hybrid Electric Vehicle)는 화석연료 배출가스를 제거하고 연료경제성을 개선하기 위하여 급속한 속도로 전통적 가솔린 엔진 자동차를 대체할 것이다. 이 리뷰는 병렬 하이브리드 전기자동차를 위한 퍼지로직 제어전략과 최적화를 설명하였다. HEV와 PHEV를 위한 전기모터와 리튬이온 배터리의 최근 발전을 기술하였으며 국제적 학술지에 출판된 논문수와 등록된 특허 수에 근거한 한국의 HEV와 PHEV 기술의 경쟁력 분석도 수행하였다.

Evaluation of Fuel Economy for a Parallel Hybrid Electric Vehicle

  • Park, Dookhwan;Kim, Hyunsoo
    • Journal of Mechanical Science and Technology
    • /
    • 제16권10호
    • /
    • pp.1287-1295
    • /
    • 2002
  • In this work, the fuel economy of a parallel hybrid electric vehicle is investigated. A vehicle control algorithm which yields operating points where operational cost of HEV is minimal is suggested. The operational cost of HEV is decided considering both the cost of fossil fuel consumed by an engine and the cost of electricity consumed by an electric motor. A procedure for obtaining the operating points of minimal fuel consumption is introduced. Simulations are carried out for 3 variations of HEV and the results are compared to the fuel economy of a conventional vehicle in order to investigate the effect of hybridization. Simulation results show that HEV with the vehicle control algorithm suggested in this work has a fuel economy 45% better than the conventional vehicle if braking energy is recuperated fully by regeneration and idling of the engine is eliminated. The vehicle modification is also investigated to obtain the target fuel economy set in PNGV program.

디젤 하이브리드 전기 자동차의 연료경제성 및 배출가스에 관한 시뮬레이션 (Simulation for the Fuel Economy and the Emission of Diesel Hybrid Electric Vehicle)

  • 한성빈;장용훈;서범주;정연종
    • 에너지공학
    • /
    • 제18권1호
    • /
    • pp.31-36
    • /
    • 2009
  • 환경친화적인 자동차 제조 방법에는 몇 가지 방법이 있다. 하이브리드 전기자동차는 가장 현실적인 방법일 것이다. 하이브리드 전기자동차는 내연기관과 전기장치의 두 가지 동력을 사용한다. 하이브리드 전기자동차는 연료소비와 배기가스 저감을 위해서 개발되었다. 저자들은 하이브리 전기자동차의 주요 동력원으로 디젤 기관을 선택했다. 테스트는 도심버스주행모드와 고속도로주행모드가 사용되었다. 본 연구는 직렬하이브리드 전기자동차, 병렬하이브리드 전기자동차, 플러그인 직렬 전기자동차와 플러그인 병렬 전기자동차에 따른 중형디젤 하이브리드 자동차의 연료경제성과 배기가스의 시뮬레이션의 결과를 제시하고 있다.

외부충전 방식 하이브리드 전기자동차의 연비 시뮬레이션 (Simulation Study on the Fuel Economy of Plug-in Type Hybrid Electric Vehicle)

  • 최득환;김현수
    • 한국자동차공학회논문집
    • /
    • 제10권5호
    • /
    • pp.121-128
    • /
    • 2002
  • In this paper, the fuel economy of plug-in type hybrid electric vehicle is investigated through simulation. For the simulation study, 2 shaft type parallel hybrid powertrain is chosen and its operation modes are described. The operation algorithm which yields operation points of minimal fuel cost is suggested. Dynamic model fur operation of HEV and simulation procedure is described. Simulation results of fuel economy is compared to non plug-in type HEV as well as conventional vehicle. With total driving distance of 37km and full usage of 2kwh of electric energy stored in battery pack, plug-in type HEV shows 28-30% improved fuel economy compared to non plug-in type HEV and 86-93% improved fuel economy compared to conventional vehicle.

병렬형 디젤 하이브리드 전기 자동차 최적화 (Optimization of the Parallel Diesel Hybrid Vehicle)

  • 염기태;양재식;배충식;김현옥
    • 한국자동차공학회논문집
    • /
    • 제16권6호
    • /
    • pp.26-32
    • /
    • 2008
  • This research presents a simulation for the fuel economy of parallel diesel hybrid vehicle. Diesel engines compared to gasoline engines have the advantages of higher fuel economy and lower $CO_2$ emission. One of the most ways to meet future fuel economy and emissions regulation is to combine diesel engine technology with a hybrid electric vehicle. The simulation of HEV is growing need for rapid analysis of the many configurations and component options. WAVE, a one-dimensional engine analysis tool, was used to a 2.7L diesel engine. ADVISOR, designed for rapid analysis of the performance and fuel economy of vehicle models, was used to conventional and hybrid electric vehicle by the use of output file from WAVE as the input engine data file for ADVISOR. A parallel diesel HEV is at least $19.7{\sim}36%$ higher fuel economy and improved acceleration ability compared to a conventional diesel vehicle. The energy loss of the parallel diesel HEV is $23{\sim}38%$ less than the conventional vehicle using regeneration.

Motor Control of a Parallel Hybrid Electric Vehicle during Mode Change without an Integrated Starter Generator

  • Song, Minseok;Oh, Joseph;Choi, Seokhwan;Kim, Yeonho;Kim, Hyunsoo
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.930-937
    • /
    • 2013
  • In this paper, a motor control algorithm for performing a mode change without an integrated starter generator (ISG) is suggested for the automatic transmission-based hybrid electric vehicle (HEV). Dynamic models of the HEV powertrains such as engine, motor, and mode clutch are derived for the transient state during the mode change, and the HEV performance simulator is developed. Using the HEV performance bench tester, the characteristics of the mode clutch torque are measured and the motor torque required for the mode clutch synchronization is determined. Based on the dynamic models and the mode clutch torque, a motor torque control algorithm is presented for mode changes, and motor control without the ISG is investigated and compared with the existing ISG control.

HEV 차량내 내연기관과 전기모터 모드의 전자파 방사에 대한 고찰 (A Study on Electromagnetic Emission of HEV's Gasoline and Electric Mode)

  • 김성범;우현구
    • 자동차안전학회지
    • /
    • 제10권1호
    • /
    • pp.12-19
    • /
    • 2018
  • This paper deals with the broadband electromagnetic emission test of a hybrid electric vehicle. The hybrid electric vehicle's powertrain system consists of an internal combustion engine and an EV traction motor. Depending on the SOC of the traction battery, these modes change automatically in the running state. The Korea electromagnetic compatibility regulations of KMVSS and UN WP.29 stipulated the evaluation method of hybrid electric vehicles. This study analyzes and compares two test results: internal combustion and electric motor mode. Some problems of test conditions are described and an improved test method is proposed for measuring broadband emissions of a hybrid electric vehicle. As a result, we expect this paper to be used as a consideration for improvement when test specifications are revised in the future.

2륜 및 4륜 구동 하이브리드 전기 자동차의 후방향 시뮬레이션 기반 연비 및 성능 평가 (Evaluation of Fuel Economy and Performance for 2WD and 4WD Hybrid Electric Vehicle Based on Backward Simulation)

  • 정종렬;김형균;김기영;임원식;차석원
    • 한국자동차공학회논문집
    • /
    • 제22권1호
    • /
    • pp.174-182
    • /
    • 2014
  • Recently, not only common types of hybrid electric vehicle (HEV) such as series or parallel but many other types of HEVs including 4WD hybrid electric vehicle have been developed and released. In this study, analysis of fuel economy and driving performance for 2WD and 4WD HEV are conducted using backward simulation based on dynamic programming. To analyze the characteristics of 4WD HEV, tire slip model based on vehicle dynamics was applied to the backward simulation program. As a result, 2WD HEV shows better fuel economy than 4WD HEV because of relatively simple configuration. However, in a severe road condition, 4WD HEV shows better driving performance that 2WD HEV had about 6% of impossible time to follow the driving cycle though the 4WD HEV had no impossible time.

하이브리드 자동차용 고압 케이블의 온도 특성에 관한 연구 (A Study on the Temperature Characteristics of High Voltage Power Cable for Hybrid Electric Vehicle)

  • 이기연;김동우;김동욱;길형준;김향곤;최충석
    • 전기학회논문지P
    • /
    • 제57권3호
    • /
    • pp.338-342
    • /
    • 2008
  • Hybrid Electric Vehicle(HEV) is driven by an internal-combustion engine and an electric motor. It is a combination of an internal-combustion engine and several electrical equipments which use a high voltage battery, an electric motors, an inverter and others. But there is not any separate detailed enforcement regulations for high voltage electric appliances in the existing vehicle-related safety standards. So, test standards suggestion as well as test technique development need to be done for ensuring electrical safety, for an electric motor, a high voltage battery, a(n) inverter/converter and an electric power transmission units and other equipments to ensure the safety of high voltage electric appliances which is the HEV key electrical component. In this paper, We are to provide helpful data to support test technique development and test standard establishment for HEV design and electrical safety security by the following methods; by measuring the voltage, the electric current, and the frequency of HEV, by analyzing electrical characteristics of high voltage electric appliances, and by analyzing temperature characteristics of the electrical current among the analyzed electrical characteristics by thermal imagining cameras.

PSiM기반의 입력분기방식 하이브리드 자동차의 모드 변환에 따른 동특성 해석 (PSiM Based Dynamic Analysis of Input Split Type Hybrid Electric Vehicle)

  • 배태석;최재호;임덕영
    • 전력전자학회논문지
    • /
    • 제17권4호
    • /
    • pp.359-367
    • /
    • 2012
  • In this paper, the input split type series-parallel hybrid electric vehicle (SPHEV) is established and the interpretation of the dynamic characteristics in four kinds of HEV modes, such as electric vehicle mode, engine mode, hybrid mode, and regeneration mode, is described. For this research, the forward-facing approach simulation method is chosen, which is useful for vehicle dynamic analysis. The rating of each powertrain component is designed based on energy-based concept and electrical peaking hybrid (ELPH) method. Finally, the designed powertrain is evaluated with the developed PSiM simulator and simulation results are shown.