• Title/Summary/Keyword: Hybrid difference scheme

Search Result 58, Processing Time 0.027 seconds

Performance Evaluation of Hybrid Multicast Scheme for WiBro Multicast Service (휴대인터넷 멀티캐스트 서비스를 제공하는 복합 방식의 성능평가)

  • An, Soon-Hong;Kim, Seung-Hoon
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.7
    • /
    • pp.854-863
    • /
    • 2006
  • As WiBro service providers which provide a wireless multimedia communication service are selected, the commercial service will emerge in the near future. Although the use of efficient multicast technology for multimedia will be essentially required, it would be difficult to design the overall communication network in the early stage by using IP multicast due to technological or commercial issues. Application layer multicast schemes or hybrid multicast schemes also should be considered. In this paper, we propose a hybrid multicast scheme and evaluate its performance against typical IP multicast schemes on modelling of the WiBro network for one of WiBro service providers. We also propose a simulation method for the hybrid multicast on the simulation network for performance evaluation. If the number of mobile nodes reaches a certain point, the performance difference between the hybrid multicast and IP multicast is reduced significantly. We show that hybrid multicast technology can be applied for WiBro service without much performance degradation.

  • PDF

High Performance Control of Linear Hybrid Stepping Motor with Force Ripple Compensator (추력 리플을 보상하는 선형 하이브리드 스테핑 전동기의 고성능 제어)

  • Hwang Tai-Sik;Seok Jul-Ki
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.527-533
    • /
    • 2005
  • The linear hybrid stepping motors (LHSM) has been widely used due to its simple structure and low cost control. Despite of its attractive features, the conventional LHSM has the multiples of 4th times harmonic reluctance force from excitation current and cogging force from space harmonic of permeance. This paper propose a new LHSM, which the mechanical and electrical phase difference are $45^{\circ}$. The proposed motor shows a unique ability to deliver low detent force and we propose a closed-loop control scheme to attack the ripple force for high performance applications. An analytical and experimental comparison between conventional and proposed LHSM is evaluated to confirm the effectiveness of the proposed modeling and control scheme.

Two-Dimensional Numerical Simulation of GaAs MESFET Using Control Volume Formulation Method (Control Volume Formulation Method를 사용한 GaAs MESFET의 2차원 수치해석)

  • Son, Sang-Hee;Park, Kwang-Mean;Park, Hyung-Moo;Kim, Han-Gu;Kim, Hyeong-Rae;Park, Jang-Woo;Kwack, Kae-Dal
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.26 no.1
    • /
    • pp.48-61
    • /
    • 1989
  • In this paper, two-dimensional numerical simulation of GaAs MESFFT with 0.7${\mu}m$ gate length is perfomed. Drift-diffusion model which consider that mobility is a function of local electric field, is used. As a discretization method, instead of FDM (finite difference method) and FEM (finite element method), the Control-Volume Formulation (CVF) is used and as a numerical scheme current hybrid scheme or upwind scheme is replaced by power-law scheme which is very approximate to exponential scheme. In the process of numerical analysis, Peclet number which represents the velocity ratio of drift and diffusion, is introduced. And using this concept a current equation which consider numerical scheme at the interface of control volume, is proposed. The I-V characteristics using the model and numerical method has a good agreement with that of previous paper by others. Therefore, it is confined that it may be useful as a simulator for GaAs MESFET. Besides I-V characteristics, the mechanism of both velocity saturation in drift-diffusion model is described from the view of velocity and electric field distribution at the bottom of the channel. In addition, the relationship between the mechanism and position of dipole and drain current, are described.

  • PDF

FITTED MESH METHOD FOR SINGULARLY PERTURBED DELAY DIFFERENTIAL TURNING POINT PROBLEMS EXHIBITING TWIN BOUNDARY LAYERS

  • MELESSE, WONDWOSEN GEBEYAW;TIRUNEH, AWOKE ANDARGIE;DERESE, GETACHEW ADAMU
    • Journal of applied mathematics & informatics
    • /
    • v.38 no.1_2
    • /
    • pp.113-132
    • /
    • 2020
  • In this paper, a class of linear second order singularly perturbed delay differential turning point problems containing a small delay (or negative shift) on the reaction term and when the solution of the problem exhibits twin boundary layers are examined. A hybrid finite difference scheme on an appropriate piecewise-uniform Shishkin mesh is constructed to discretize the problem. We proved that the method is almost second order ε-uniformly convergent in the maximum norm. Numerical experiments are considered to illustrate the theoretical results.

A STUDY ON THE CHOICE OF THERMAL MODELS IN THE COMPUTATION OF NATURAL CONVECTION WITH THE LATTICE BOLTZMANN METHOD (Lattice Boltzmann 방법을 사용한 자연대류 해석에서 열모델의 선택에 관한 연구)

  • Choi, Seok-Ki;Kim, Seong-O
    • Journal of computational fluids engineering
    • /
    • v.16 no.4
    • /
    • pp.7-13
    • /
    • 2011
  • A comparative analysis of thermal models in the lattice Boltzmann method(LBM) for the simulation of laminar natural convection in a square cavity is presented. A HYBRID method, in which the thermal equation is solved by the Navier-Stokes equation method while the mass and momentum conservation are resolved by the lattice Boltzmann method, is introduced and its merits are explained. All the governing equations are discretized on a cell-centered, non-uniform grid using the finite-volume method. The convection terms are treated by a second-order central-difference scheme with a deferred correction method to ensure stability of the solutions. The HYBRID method and the double-population method are applied to the simulation of natural convection in a square cavity and the predicted results are compared with the benchmark solutions given in the literatures. The predicted results are also compared with those by the conventional Navier-Stokes equation method. In general, the present HYBRID method is as accurate as the Navier-Stokes equation method and the double-population method. The HYBRID method shows better convergence and stability than the double-population method. These observations indicate that this HYBRID method is an efficient and economic method for the simulation of incompressible fluid flow and heat transfer problem with the LBM.

Hybrid Scaling Based Dynamic Time Warping for Detection of Low-rate TCP Attacks

  • So, Won-Ho;Yoo, Kyoung-Min;Kim, Young-Chon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.7B
    • /
    • pp.592-600
    • /
    • 2008
  • In this paper, a Hybrid Scaling based DTW (HS-DTW) mechanism is proposed for detection of periodic shrew TCP attacks. A low-rate TCP attack which is a type of shrew DoS (Denial of Service) attacks, was reported recently, but it is difficult to detect the attack using previous flooding DoS detection mechanisms. A pattern matching method with DTW (Dynamic Time Warping) as a type of defense mechanisms was shown to be reasonable method of detecting and defending against a periodic low-rate TCP attack in an input traffic link. This method, however, has the problem that a legitimate link may be misidentified as an attack link, if the threshold of the DTW value is not reasonable. In order to effectively discriminate between attack traffic and legitimate traffic, the difference between their DTW values should be large as possible. To increase the difference, we analyze a critical problem with a previous algorithm and introduce a scaling method that increases the difference between DTW values. Four kinds of scaling methods are considered and the standard deviation of the sampling data is adopted. We can select an appropriate scaling scheme according to the standard deviation of an input signal. This is why the HS-DTW increases the difference between DTW values of legitimate and attack traffic. The result is that the determination of the threshold value for discrimination is easier and the probability of mistaking legitimate traffic for an attack is dramatically reduced.

Analysis of TDOA and TDOA/SS Based Geolocation Techniques in a Non-Line-of-Sight Environment

  • Huang, Jiyan;Wan, Qun
    • Journal of Communications and Networks
    • /
    • v.14 no.5
    • /
    • pp.533-539
    • /
    • 2012
  • The performance analysis of wireless geolocation in a non-line-of-sight (NLOS) environment is a very important issue. Since Cramer-Rao lower bound (CRLB) determines the physical impossibility of the variance of an unbiased estimator being less than the bound, many studies presented the performance analysis in terms of CRLB. Several CRLBs for time-of-arrival (TOA), pseudo-range TOA, angle-of-arrival (AOA), and signal strength (SS) based positioning methods have been derived for NLOS environment. However, the performance analysis of time difference of arrival (TDOA) and TDOA/SS based geolocation techniques in a NLOS environment is still an opening issue. This paper derives the CRLBs of TDOA and TDOA/SS based positioning methods for NLOS environment. In addition, theoretical analysis proves that the derived CRLB for TDOA is the same as that of pseudo-range TOA and the TDOA/SS scheme has a lower CRLB than the TDOA (or SS) scheme.

Implicit Incompressible flow solver on Unstructured Hybrid grids (비구조 혼합 격자에서 내재적 방법을 이용한 비압축성 유동해석)

  • Kim J.;Kim Y.M;Maeng J.S
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.48-54
    • /
    • 1998
  • Three-dimensional incompressible Navier-Stokes equations have been solved by the node-centered finite volume method with unstructured hybrid grids. The pressure-velocity coupling is handled by the artificial compressibility algorithm and convective fluxes are obtained by Roe's flux difference splitting scheme with linear reconstruction of the solutions. Euler implicit method is used for time-integration. The viscous terms are discretised in a manner to handle any kind of grids such as tetrahedra, prisms, pyramids, hexahedra, or mixed-element grid. The numerical efficiency and accuracy of the present method is critically evaluated for several example problems.

  • PDF

Implicit Incompressible flow solver on Unstructured Hybrid grids (비정렬 혼합 격자에서 내재적 방법을 이용한 비압축성 유동해석)

  • Kim, Jong-Tae;Kim, Yong-Mo;Maeng, Ju-Seong
    • Journal of computational fluids engineering
    • /
    • v.3 no.2
    • /
    • pp.17-26
    • /
    • 1998
  • The three-dimensional incompressible Navier-Stokes equations have been solved by a node-centered finite volume method with unstructured hybrid grids. The pressure-velocity coupling is handled by the artificial compressibility algorithm and convective fluxes are obtained by Roe's flux difference splitting scheme with linear reconstruction of the solutions. Euler implicit method with Jacobi matrix solver is used for the time-integration. The viscous terms are discretised in a manner to handle any kind of grids such as tetragedra, prisms, pyramids, hexahedra, or mixed-element grid. Inviscid bump flow is solved to check the accuracy of high order convective flux discretisation. And viscous flows around a circular cylinder and a sphere are studied to show the efficiency and accuracy of the solver.

  • PDF

Performance Analysis of Input-Output Buffering ATM Switch with Output-port Expansion Mechanism (출력포트 확장 방식을 사용한 입출력 버퍼형 ATM 교환기에서의 성능 비교 분석)

  • Kwon, Se-Dong;Park, Hyun-Min
    • The KIPS Transactions:PartC
    • /
    • v.9C no.4
    • /
    • pp.531-542
    • /
    • 2002
  • An input and output buffering ATM switch conventionally operates in either Queueloss mode or Backpressure mode. Recently, a new mode, which is called Hybrid mode, was proposed to overcome the drawbacks of Queueloss mode and Backpressure mode. In Hybrid mode, when both the destined output buffer and the originfted input buffer are full, a cell is dropped. This thesis analyzes the cell loss rate and the cell delay of Queueloss, Backpressure and Hybrid modes in a switch adopting output-port expansion scheme under uniform traffic. Output-port expansion scheme allows only one cell from an input buffer to be switched during one time slot. If several cells switch to a same destined output port, the number of maximum transfer cells is restricted to K (Output-port expansion ratio). The simulation results show that if an offered load is less than 0.9, Hybrid mode has lower cell loss rate than the other modes; otherwise, Queueloss mode illustrates the lowest cell loss rate, which is a different result from previous researches. However, the difference between Hybrid and Queueloss modes is comparably small. As expected, the average cell delay in Backpressure mode is lower than those of Queueloss mode and Hybrid mode, since the cell delay due to the retransmission of higher number of dropped cells in Backpressure mode is not considered.