• Title/Summary/Keyword: Hybrid control

Search Result 2,579, Processing Time 0.03 seconds

A hybrid position/force control for robot manipulator with position controllers (위치 제어기를 갖는 로보트 매니퓰레이터의 Hybrid 위치/힘 제어)

  • 이병부;정광손;박종국
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.638-641
    • /
    • 1992
  • In this paper, a hybrid position/force control scheme is proposed. The control scheme modifies the position command for force control against constraint surface of environment and is very simply designed and implemented. The merits of the control scheme are that it can cope with change of constraint conditions and small position inaccuracy of the environment. A constraint surface position observer is also proposed to reduce disturbances on controlled force.

  • PDF

A new hybrid vibration control methodology using a combination of magnetostrictive and hard damping alloys

  • Buravalla, Vidyashankar R.;Bhattacharya, Bishakh
    • Smart Structures and Systems
    • /
    • v.3 no.4
    • /
    • pp.405-422
    • /
    • 2007
  • A new hybrid damping technique for vibration reduction in flexible structures, wherein a combination of layers of hard passive damping alloys and active (smart) magnetostrictive material is used to reduce vibrations, is proposed. While most conventional vibration control treatments are based exclusively on either passive or active based systems, this technique aims to combine the advantages of these systems and simultaneously, to overcome the inherent disadvantages in the individual systems. Two types of combined damping systems are idealized and studied here, viz., the Noninteractive system and the Interactive system. Frequency domain studies are carried out to investigate their performance. Finite element simulations using previously developed smart beam elements are carried out on typical metallic and laminated composite cantilever beams treated with hybrid damping. The influence of various parameters like excitation levels, frequency (mode) and control gain on the damping performance is investigated. It is shown that the proposed system could be used effectively to dampen the structural vibration over a wide frequency range. The interaction between the active and passive damping layers is brought out by a comparative study of the combined systems. Illustrative comparisons with 'only passive' and 'only active' damping schemes are also made. The influence and the mode dependence of control gain in a hybrid system is clearly illustrated. This study also demonstrates the significance and the exploitation of strain dependency of passive damping on the overall damping of the hybrid system. Further, the influence of the depthwise location of damping layers in laminated structures is also investigated.

Energy Management Technology Development for an Independent Fuel Cell-Battery Hybrid System Using for a Household (가정용 독립 연료전지-배터리 하이브리드 에너지 관리 기술 개발)

  • YANG, SEUGRAN;KIM, JUNGSUK;CHOI, MIHWA;KIM, YOUNG-BAE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.30 no.2
    • /
    • pp.155-162
    • /
    • 2019
  • The energy management technology for an independent fuel cell-battery hybrid system is developed for a household usage. To develop an efficient energy management technology, a simulation model is first developed. After the model is verified with experimental results, three energy management schemes are developed. Three control techniques are a fuzzy logic control (FLC), a state machine control (SMC), and a hybrid method of FLC and SMC. As the fuel cell-battery hybrid system is used for a house, battery state of charge (SOC) regulation is the most important factor for an energy management because SOC should be kept constant every day for continuous usage. Three management schemes are compared to see SOC, power split, and fuel cell power variations effects. Experimental results are also presented and the most favorable strategy is the state machine combined fuzzy control method.

Hybrid Position/Force Control of 3 DOF Robot (3자유도 로봇의 하이브리드 위치/힘 제어)

  • 양선호;박태욱;양현석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.772-776
    • /
    • 1997
  • For a robot to perfom more versatile tasks, it is invitable for the robot's end-effector to come into contact with its environment. In thos case, to achieve better performance, it is necessary to properly control the contact force between the robot and the environment. In thos work, hybrid control theory is studied and is verified through experiment using a 3 DOF robot. In the experiment, two position/force controllers are used. Fist, proportional-integral-derivative controller is used as the controller for both position and force. Second, computed-torque method is used as the position controller, and proportional-integral-derivative controller is used as the force controller. For a proper modeling used in computed-torque method, the friction torque is measured by experiment, and compensation method is studied. The hybrid control method used in this experiment effectively control the contact force between the end-effector and the environment for various types of jobs.

  • PDF

A study on two dimensional hybrid control by the relative motion between a robot manipulator and a workpiece (로봇 매니퓰레이터와 공작물의 상대운동에 의한 위치와 힘의 2차원 하이브리드 제어에 관한 연구)

  • Jin, Sang-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.1
    • /
    • pp.100-104
    • /
    • 1998
  • A hybrid control method based on the relative motion between a manipulator and a workpiece is described for a two-dimensional manipulator, in which it is assumed that there are no collisions between the robot manipulator and the workpiece, and that we use a computed force law which is similar to the computed torque law in the trajectory tracking problem of a robot manipulator. The effectiveness of the proposed hybrid control method is illustrated through several simulations.

  • PDF

A study ont he state-variable feedback control of a hybrid step motor (하이브리드 스텝모터의 상태변수 궤환제어에 관한 연구)

  • 권순학;김광배
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.566-569
    • /
    • 1987
  • The primary difficulties encountered in the use of step motors are underdamped response when stopping at a specified position and dynamic instability during high-speed slewing. This paper proposes a speed and position detection scheme using the back EMF generated by the rotating permanent magnet field of a two-phase 1.8.deg. hybrid step motor, and presents its application to the state-variable feedback control of the hybrid step motor. All simulation results in a single step response show that the hybrid step motor performances such as peak overshoot and settling time are greatly improved.

  • PDF

A Development of Parallel Type Hybrid Drivetrain System for Transit Bus Part 6 : A Development of Shift Control Algorithm for Improving the Shift Characteristics of the Hybrid Drivetrain with AMT (버스용 병렬형 하이브리드 동력전달계의 개발 (VI) 제 6 편 : 하이브리드 동력전달계용 자동화 변속기의 변속 질 향상을 위한 변속 제어 알고리듬의 개발)

  • 조성태;전순일;조한상;박영일;이장무
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.5
    • /
    • pp.105-114
    • /
    • 2001
  • In this study, a shift control algorithm far improving the shift quality of a parallel hybrid drivetrain with an automated manual transmission (AM) is proposed. The general AMT requires the sophisticated control of clutch in the clutch engagement to improve its shift characteristics, and that is generally known to be difficult. But in this hybrid drivetrain, we can control the speeds of clutch plates by engine and motor control, and it provides the easier clutch control in shift process than general AMT. Additionally, it permits the much-reduced shift shock. The motor control during the shift period is also to achieve reduced velocity drop of the vehicle in comparison with that of a general AMT. Furthermore various dynamometer-based experiments are carried out to prove the validity of the proposed shift control algorithm.

  • PDF

A Hybrid Solar Tracking System using Weather Condition Estimates with a Vision Camera and GPS (날씨인식 결과를 이용한 GPS 와 비전센서기반 하이브리드 방식의 태양추적 시스템 개발)

  • Yoo, Jeongjae;Kang, Yeonsik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.557-562
    • /
    • 2014
  • It is well known that solar tracking systems can increase the efficiency of exiting solar panels significantly. In this paper, a hybrid solar tracking system has been developed by using both astronomical estimates from a GPS and the image processing results of a camera vision system. A decision making process is also proposed to distinguish current weather conditions using camera images. Based on the decision making results, the proposed hybrid tracking system switches two tracking control methods. The one control method is based on astronomical estimates of the current solar position. And the other control method is based on the solar image processing result. The developed hybrid solar tracking system is implemented on an experimental platform and the performance of the developed control methods are verified.

Control Strategy for Buck DC/DC Converter Based on Two-dimensional Hybrid Cloud Model

  • Wang, Qing-Yu;Gong, Ren-Xi;Qin, Li-Wen;Feng, Zhao-He
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1684-1692
    • /
    • 2016
  • In order to adapt the fast dynamic performances of Buck DC/DC converter, and reduce the influence on converter performance owing to uncertain factors such as the disturbances of parameters and load, a control strategy based on two-dimensional hybrid cloud model is proposed. Firstly, two cloud models corresponding to the specific control inputs are determined by maximum determination approach, respectively, and then a control rule decided by the two cloud models is selected by a rule selector, finally, according to the reasoning structure of the rule, the control increment is calculated out by a two-dimensional hybrid cloud decision module. Both the simulation and experiment results show that the strategy can dramatically improve the dynamic performances of the converter, and enhance the adaptive ability to resist the random disturbances, and its control effect is superior to that of the current-mode control.

Control of Bio Electrical Hybrid System using LMI Technique (선행행렬부등식(LMI) 기법을 이용한 전기적 특성을 갖는 복합 생체 시스템 제어)

  • Oh, Y.S.;Min, S.J.;Oh, K.S.;Heo, H.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2687-2689
    • /
    • 2004
  • LMI(Linear Matrix Inequalities) technique is implemented to control hybrid bio system with electric element Biological materials such as muscle and tissue are modeled as electrically passive element in the system. State feedback controller for the hybrid system is designed with constrained control input. The hybrid bio electrical system is characterized in terms of the time and frequency.

  • PDF