Browse > Article
http://dx.doi.org/10.7316/KHNES.2019.30.2.155

Energy Management Technology Development for an Independent Fuel Cell-Battery Hybrid System Using for a Household  

YANG, SEUGRAN (KEPCO Research Institute)
KIM, JUNGSUK (KEPCO Research Institute)
CHOI, MIHWA (KEPCO Research Institute)
KIM, YOUNG-BAE (School of Mechanical Engineering, Chonnam National University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.30, no.2, 2019 , pp. 155-162 More about this Journal
Abstract
The energy management technology for an independent fuel cell-battery hybrid system is developed for a household usage. To develop an efficient energy management technology, a simulation model is first developed. After the model is verified with experimental results, three energy management schemes are developed. Three control techniques are a fuzzy logic control (FLC), a state machine control (SMC), and a hybrid method of FLC and SMC. As the fuel cell-battery hybrid system is used for a house, battery state of charge (SOC) regulation is the most important factor for an energy management because SOC should be kept constant every day for continuous usage. Three management schemes are compared to see SOC, power split, and fuel cell power variations effects. Experimental results are also presented and the most favorable strategy is the state machine combined fuzzy control method.
Keywords
Fuel cell-battery hybrid system; Energy management technology; Combined hybrid control; Battery SOC control;
Citations & Related Records
연도 인용수 순위
  • Reference
1 X. Luo, J. H. Wang, M. Dooner, and J. Clarke, "Overview of current development in electrical energy storage technologies and the application potential in power system operation", Applied Energy, Vol. 137, 2015, pp. 511-536, doi: https://doi.org/10.1016/j.apenergy.2014.09.081.   DOI
2 P. Thounthong and S. Rael, "The benefits of hybridization", IEEE Industrial Electron Magazine, Vol. 3, No. 3, 2009, pp. 25-37, doi: https://doi.org/10.1109/MIE.2009.933885.   DOI
3 P. Xuewei and A. K. Rathore, "Novel interleaved bidirectional snubberless soft-switching current-fed full-bridge voltage doubler for fuel-cell vehicles", IEEE Transactions of Power Electronics, Vol. 28, No. 12, 2013, pp. 5535-5546, doi: https://doi.org/10.1109/TPEL.2013.2252199.   DOI
4 P. H. Huang, J. K. Kuo, and C. Y. Huang, "A new application of the ultrabattery to hybrid fuel cell vehicles", International Journal of Energy Reserach, Vol. 40, No. 2, 2016, pp. 146-159, doi: https://doi.org/10.1002/er.3426.   DOI
5 W. Jiang and B. Fahimi, "Active current sharing and source management in fuel cell-battery hybrid power system", IEEE Transactions on Industrial Electronics, Vol. 57, No. 2, 2010, pp. 752-761, doi: https://doi.org/10.1109/TIE.2009.2027249.   DOI
6 C. Y. Li and G. P Liu, "Optimal fuzzy power control and management of fuel cell/battery hybrid vehicles", Journal of Power Sources, Vol. 192, No. 2, 2009, pp. 525-533, doi: https://doi.org/10.1016/j.jpowsour.2009.03.007.   DOI
7 K. Ou, W. W. Yuan, M. Choi, S. Yang, S. Jung, and Y. B. Kim, "Optimized power management based on adaptice PMP algorithm for a stationary PEM fuel cell/battery hybrid system", International Journal of Hydrogen Energy, Vol. 43, No. 32, 2018, pp. 15433-15444, doi: https://doi.org/10.1016/j.ijhydene.2018.06.072.   DOI
8 C. Bao, M. Ouyang, and B. Yi, "Modeling and control of air stream and hydrogen flow with recirculation in a PEM fuel cell system-I. Control-oriented modeling", International Journal of Hydrogen Energy, Vol. 31, No. 13, 2006, pp. 1879-1896, doi: https://doi.org/10.1016/j.ijhydene.2006.02.031.   DOI
9 L. Xu, M. Ouyang, J. Li, F. Yang, L. Lu, and J. Hua, "Application of Pontryagin's Minimal Principle to the energy management strategy of plugin fuel cell electric vehicles", International Journal of Hydrogen Energy, Vol. 38, No. 24, 2013, pp. 10104-10115, doi: https://doi.org/10.1016/j.ijhydene.2013.05.125.   DOI
10 H. He, R. Xiong, K. Zhao, and Z. Liu, "Energy management strategy research on a hybrid power system by hardwarein-loop experiments", Applied Energy, Vol. 112, 2013, pp. 1311-1317, doi: https://doi.org/10.1016/j.apenergy.2012.12.029.   DOI
11 G. Li, J. Zhan, and H. He, "Battery SOC constraint comparison for predictive energy management of plug-in hybrid electric bus", Applied Energy, Vol. 194, 2017, pp. 578-587, doi: https://doi.org/10.1016/j.apenergy.2016.09.071.   DOI
12 W. J. Yang, D. H. Yu, and Y. B. Kim, "Parameter estimation of lithium-ion batteries and noise reduction using $H{\infty}$ filter", Journal of Mechanical Science and Technology, Vol. 27, No. 1, 2013, pp. 247-256, doi: https://doi.org/10.1007/s12206-012-1203-z.   DOI
13 H. Borhan, A. Vahidi, A. M. Phillip, M. L. Kuang, I. V. Kolmanovsky, and S. Di Cairano, "MPC-based energy management of a power-split hybrid electric vehicle", IEEE Transactions on Control Systems Technology, Vol. 20, No. 3, 2012, pp. 593-603, doi: https://doi.org/10.1109/TCST.2011.2134852.   DOI
14 J. Wu, X. Z. Yuan, J. J. Martin, H. Wang, D. Yang, J. Qiao, and J. Ma, "Proton exchange membrane fuel cell degradation under close to open-circuit conditions: part i: in situ diagnosis", Journal of Power Sources, Vol. 195, No. 4, 2010, pp. 1171-1176, doi: https://doi.org/10.1016/j.jpowsour.2009.08.095.   DOI
15 K. Ameur, A. Hadjaissa, M. S. Ait Cheikh, A. Cheknane, and N. Essounbouli, "Fuzzy energy management of hybrid renewable power system with the aim to extend component lifetime", International Journal of Energy Research, Vol. 41, No. 3, 2017, pp. 1867-1879, doi: https://doi.org/10.1002/er.3748.   DOI
16 Y. X. Wang, K. Ou, and Y. B. Kim, "Power source protection method for hybrid polymer electrolyte membrane fuel cell/lithium-ion battery system", Renewable Energy, Vol. 111, 2017, pp. 381-391, doi: https://doi.org/10.1016/j.renene.2017.03.088.   DOI
17 A. Girault, B. Lee, and E. A. Lee, "Hierarchical finite state machines with multiple concurrency models", IEEE Transactions on Computer-Aided Design, Vol. 18, No. 6, 1999, pp. 742-760, doi: https://doi.org/10.1109/43.766725.   DOI