DOI QR코드

DOI QR Code

Energy Management Technology Development for an Independent Fuel Cell-Battery Hybrid System Using for a Household

가정용 독립 연료전지-배터리 하이브리드 에너지 관리 기술 개발

  • 양석란 (한국전력공사 전력연구소 신재생에너지연구소) ;
  • 김정석 (한국전력공사 전력연구소 신재생에너지연구소) ;
  • 최미화 (한국전력공사 전력연구소 신재생에너지연구소) ;
  • 김영배 (전남대학교 기계공학부)
  • Received : 2019.03.08
  • Accepted : 2019.04.30
  • Published : 2019.04.30

Abstract

The energy management technology for an independent fuel cell-battery hybrid system is developed for a household usage. To develop an efficient energy management technology, a simulation model is first developed. After the model is verified with experimental results, three energy management schemes are developed. Three control techniques are a fuzzy logic control (FLC), a state machine control (SMC), and a hybrid method of FLC and SMC. As the fuel cell-battery hybrid system is used for a house, battery state of charge (SOC) regulation is the most important factor for an energy management because SOC should be kept constant every day for continuous usage. Three management schemes are compared to see SOC, power split, and fuel cell power variations effects. Experimental results are also presented and the most favorable strategy is the state machine combined fuzzy control method.

Keywords

SSONB2_2019_v30n2_155_f0001.png 이미지

Fig. 1. Configuration of PEMFC-battery hybrid system

SSONB2_2019_v30n2_155_f0002.png 이미지

Fig. 2. Polarization curve for the fuel cell model

SSONB2_2019_v30n2_155_f0003.png 이미지

Fig. 3. Equivalent circuit of battery model

SSONB2_2019_v30n2_155_f0004.png 이미지

Fig. 4. Internal resistance of battery

SSONB2_2019_v30n2_155_f0005.png 이미지

Fig. 5. Integrated hybrid model using Matlab/Simulink

SSONB2_2019_v30n2_155_f0006.png 이미지

Fig. 6. Flowchart of SMC

SSONB2_2019_v30n2_155_f0007.png 이미지

Fig. 7. 3-D fuzzy rules

SSONB2_2019_v30n2_155_f0008.png 이미지

Fig. 8. Hybrid rules combined with SMC and FLC

SSONB2_2019_v30n2_155_f0009.png 이미지

Fig. 9. Hybrid power experimmental platform

SSONB2_2019_v30n2_155_f0010.png 이미지

Fig. 10. Required load power

SSONB2_2019_v30n2_155_f0011.png 이미지

Fig. 11. Simulation and experimental results for battery current

SSONB2_2019_v30n2_155_f0012.png 이미지

Fig. 12. Simulation and experimental results for bus voltage

SSONB2_2019_v30n2_155_f0013.png 이미지

Fig. 13. Variation of power split for SMC and hybrid method (SMC+FLC)

SSONB2_2019_v30n2_155_f0014.png 이미지

Fig. 14. Fuel consumption variation

SSONB2_2019_v30n2_155_f0015.png 이미지

Fig. 15. Battery SOC variation

Table 1. Specification of hybrid power system

SSONB2_2019_v30n2_155_t0001.png 이미지

References

  1. X. Luo, J. H. Wang, M. Dooner, and J. Clarke, "Overview of current development in electrical energy storage technologies and the application potential in power system operation", Applied Energy, Vol. 137, 2015, pp. 511-536, doi: https://doi.org/10.1016/j.apenergy.2014.09.081.
  2. P. Thounthong and S. Rael, "The benefits of hybridization", IEEE Industrial Electron Magazine, Vol. 3, No. 3, 2009, pp. 25-37, doi: https://doi.org/10.1109/MIE.2009.933885.
  3. P. Xuewei and A. K. Rathore, "Novel interleaved bidirectional snubberless soft-switching current-fed full-bridge voltage doubler for fuel-cell vehicles", IEEE Transactions of Power Electronics, Vol. 28, No. 12, 2013, pp. 5535-5546, doi: https://doi.org/10.1109/TPEL.2013.2252199.
  4. P. H. Huang, J. K. Kuo, and C. Y. Huang, "A new application of the ultrabattery to hybrid fuel cell vehicles", International Journal of Energy Reserach, Vol. 40, No. 2, 2016, pp. 146-159, doi: https://doi.org/10.1002/er.3426.
  5. W. Jiang and B. Fahimi, "Active current sharing and source management in fuel cell-battery hybrid power system", IEEE Transactions on Industrial Electronics, Vol. 57, No. 2, 2010, pp. 752-761, doi: https://doi.org/10.1109/TIE.2009.2027249.
  6. C. Y. Li and G. P Liu, "Optimal fuzzy power control and management of fuel cell/battery hybrid vehicles", Journal of Power Sources, Vol. 192, No. 2, 2009, pp. 525-533, doi: https://doi.org/10.1016/j.jpowsour.2009.03.007.
  7. K. Ou, W. W. Yuan, M. Choi, S. Yang, S. Jung, and Y. B. Kim, "Optimized power management based on adaptice PMP algorithm for a stationary PEM fuel cell/battery hybrid system", International Journal of Hydrogen Energy, Vol. 43, No. 32, 2018, pp. 15433-15444, doi: https://doi.org/10.1016/j.ijhydene.2018.06.072.
  8. L. Xu, M. Ouyang, J. Li, F. Yang, L. Lu, and J. Hua, "Application of Pontryagin's Minimal Principle to the energy management strategy of plugin fuel cell electric vehicles", International Journal of Hydrogen Energy, Vol. 38, No. 24, 2013, pp. 10104-10115, doi: https://doi.org/10.1016/j.ijhydene.2013.05.125.
  9. H. He, R. Xiong, K. Zhao, and Z. Liu, "Energy management strategy research on a hybrid power system by hardwarein-loop experiments", Applied Energy, Vol. 112, 2013, pp. 1311-1317, doi: https://doi.org/10.1016/j.apenergy.2012.12.029.
  10. C. Bao, M. Ouyang, and B. Yi, "Modeling and control of air stream and hydrogen flow with recirculation in a PEM fuel cell system-I. Control-oriented modeling", International Journal of Hydrogen Energy, Vol. 31, No. 13, 2006, pp. 1879-1896, doi: https://doi.org/10.1016/j.ijhydene.2006.02.031.
  11. G. Li, J. Zhan, and H. He, "Battery SOC constraint comparison for predictive energy management of plug-in hybrid electric bus", Applied Energy, Vol. 194, 2017, pp. 578-587, doi: https://doi.org/10.1016/j.apenergy.2016.09.071.
  12. W. J. Yang, D. H. Yu, and Y. B. Kim, "Parameter estimation of lithium-ion batteries and noise reduction using $H{\infty}$ filter", Journal of Mechanical Science and Technology, Vol. 27, No. 1, 2013, pp. 247-256, doi: https://doi.org/10.1007/s12206-012-1203-z.
  13. H. Borhan, A. Vahidi, A. M. Phillip, M. L. Kuang, I. V. Kolmanovsky, and S. Di Cairano, "MPC-based energy management of a power-split hybrid electric vehicle", IEEE Transactions on Control Systems Technology, Vol. 20, No. 3, 2012, pp. 593-603, doi: https://doi.org/10.1109/TCST.2011.2134852.
  14. J. Wu, X. Z. Yuan, J. J. Martin, H. Wang, D. Yang, J. Qiao, and J. Ma, "Proton exchange membrane fuel cell degradation under close to open-circuit conditions: part i: in situ diagnosis", Journal of Power Sources, Vol. 195, No. 4, 2010, pp. 1171-1176, doi: https://doi.org/10.1016/j.jpowsour.2009.08.095.
  15. Y. X. Wang, K. Ou, and Y. B. Kim, "Power source protection method for hybrid polymer electrolyte membrane fuel cell/lithium-ion battery system", Renewable Energy, Vol. 111, 2017, pp. 381-391, doi: https://doi.org/10.1016/j.renene.2017.03.088.
  16. A. Girault, B. Lee, and E. A. Lee, "Hierarchical finite state machines with multiple concurrency models", IEEE Transactions on Computer-Aided Design, Vol. 18, No. 6, 1999, pp. 742-760, doi: https://doi.org/10.1109/43.766725.
  17. K. Ameur, A. Hadjaissa, M. S. Ait Cheikh, A. Cheknane, and N. Essounbouli, "Fuzzy energy management of hybrid renewable power system with the aim to extend component lifetime", International Journal of Energy Research, Vol. 41, No. 3, 2017, pp. 1867-1879, doi: https://doi.org/10.1002/er.3748.