• Title/Summary/Keyword: Hybrid composite beam

Search Result 128, Processing Time 0.029 seconds

Composite aluminum-slab RC beam bonded by a prestressed hybrid carbon-glass composite material

  • Rabahi Abderezak;Tahar Hassaine Daouadji;Bensatallah Tayeb
    • Structural Engineering and Mechanics
    • /
    • v.85 no.5
    • /
    • pp.573-592
    • /
    • 2023
  • This paper presents a careful theoretical investigation into interfacial stresses in composite aluminum-slab reinforced concrete beam bonded by a prestressed hybrid carbon-glass composite material. The model is based on equilibrium and deformations compatibility requirements in and all parts of the strengthened beam, i.e., the aluminum beam, the slab reinforced concrete, the hybrid carbon-glass composite plate and the adhesive layer. The theoretical predictions are compared with other existing solutions. Numerical results from the present analysis are presented both to demonstrate the advantages of the present solution over existing ones and to illustrate the main characteristics of interfacial stress distributions. It is shown that the stresses at the interface are influenced by the material and geometry parameters of the composite beam. This research is helpful for the understanding on mechanical behaviour of the interface and design of the hybrid structures.

An Study on the flexural capacity of 'Hybrid Beam' (하이브리드 보의 휨성능에 관한 연구)

  • Hong, Sung-Gul;Yang, Dong-Hyun;Jung, Jong-Hyun;Lim, Byung-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.11a
    • /
    • pp.301-304
    • /
    • 2006
  • This study was performed to suggest a theoretical method of flexural capacity of 'Hybrid Beam'. Since the center of 'Hybrid Beam' is composed of embedded composite beam section, a theoretical method of embedded composite beam could be applied to estimation of flexural capacity of 'Hybrid Beam'. In this study, a theoretical evaluation method for flexural capacity of embedded composite beam, which is suggested by KBC 2005, is chosen and its applicability is evaluates as comparing theoretical results with experimental results. In results, for estimation of theoretical ultimate strength, it is proper method that both effects due to concrete and rebar are considered and whole section is assumed to be plastic. and for estimation of theoretical strength at yielding stste, it is proper to apply allowable stress design.

  • PDF

Structural Design Guide Line of Composite Beam (내화피복이 생략된 합성보의 구조설계지침 제정을 위한 고찰)

  • Hong, Won-Kee;Kim, Jin-Min;Lee, Kyoung-Hun;Park, Seon-Chee;Kim, Jeom-Han
    • KIEAE Journal
    • /
    • v.8 no.1
    • /
    • pp.93-98
    • /
    • 2008
  • As high rise buildings and large span spatial structures are constructed, new composite members and construction techniques are continuously developed. Wide flange steel beam can be easily constructed but the fire proofing protection is necessary and the cost is high. Nowadays environmental pollution of structures is becoming a big issue. The material of fire proofing protection is not allowed to use for structural members in several countries because it cab be a cause of environment pollution. Composite beam is a new hybrid beam system which is not needed a fire proofing protection process. Composite beam has better construction capacity than that of RC system and has more economic advantages than that of wide flange steel beam. In this paper, structural design guide lines of composite beam were provided to apply design and construction.

Bending Performance Evaluation of Aluminum-Composite Hybrid Square Tube Beams (알루미늄-복합재료 혼성 사각관 보의 굽힘 성능평가)

  • Lee, Sung-Hyuk;Choi, Nak-Sam
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.76-79
    • /
    • 2005
  • Bending deformation and energy absorption characteristics of aluminum-composite hybrid tube beams have been analyzed for improvement in the bending performance of aluminum space frame by using experimental tests combined with theoretical and finite element analyses. Hybrid tube beams composed of glass fabric/epoxy layer wrapped around on aluminum tube were made in autoclave with the recommended curing cycle. Basic properties of aluminum material used for initial input data of the finite element simulation and theoretical analysis were obtained from the true stress-true strain curve of specimen which had bean extracted from the Al tube beam. A modified theoretical model was developed to predict the resistance to the collapse of hybrid tube beams subjected to a bending load. Theoretical moment-rotation angle curves of hybrid tube beams were in good agreement with experimental ones, which was comparable to the results obtained from finite element simulation. Hybrid tube beams strengthened by composite layer on the whole web and flange showed an excellent bending strength and energy absorption capability.

  • PDF

Experimental Study on the Flexural Capacity of the U-Flanged Truss Hybrid Beam (U-플랜지 트러스 복합보의 휨 내력에 대한 실험 연구)

  • Oh, Myoung Ho;Kim, Young Ho;Kim, Myeong Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.4
    • /
    • pp.123-130
    • /
    • 2018
  • U-flanged truss beam is composed of u-shaped upper steel flange, lower steel plate of 8mm or more thickness, and connecting lattice bars welded on the upper and lower sides. The hybrid beam with U-flanged steel truss is made in the construction site through pouring the concrete, and designated as U-flanged truss hybrid beam. In this study the structural experiments on the 4 hybrid beams with the proposed basic shapes were performed, and the flexural capacities from the tests were compared with those from the theoretical approach. The failure modes of each specimen were quite similar. The peak load was reached with the ductile behavior after yielding, and the failure occurred through the concrete crushing. The considerable increasement of deformation was observed up to the concrete crushing. The composite action of concrete and steel member was considered to be reliable from the behavior of specimens. The flexural strength of hybrid beam has been evaluated exactly using the calculation method applied in the boubly reinforced concrete beam. The placement of additional rebars in the bottom instead of upper side is proposed for the efficient design of U-flanged truss hybrid beam.

A New Hybrid-Mixed Composite Laminated Curved Beam Element

  • Lee Ho-Cheol;Kim Jin-Gon
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.3
    • /
    • pp.811-819
    • /
    • 2005
  • In this study, we present a new efficient hybrid-mixed composite laminated curved beam element. The present element, which is based on the Hellinger-Reissner variational principle and the first-order shear deformation lamination theory, employs consistent stress parameters corresponding to cubic displacement polynomials with additional nodeless degrees in order to resolve the numerical difficulties due to the spurious constraints. The stress parameters are eliminated and the nodeless degrees are condensed out to obtain the ($6{\times}6$) element stiffness matrix. The present study also incorporates the straightforward prediction of interlaminar stresses from equilibrium equations. Several numerical examples confirm the superior behavior of the present composite laminated curved beam element.

Study on the Cyclic Seismic Testing of U-shape Hybrid Composite Beam-to-Composite Column Connections (신형상 U형 하이브리드 합성보와 기둥 접합부의 내진성능에 관한 연구)

  • Kim, Sung Bae;Kim, Sang Seup;Ryu, Deog Su
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.1
    • /
    • pp.47-59
    • /
    • 2013
  • This study that is a successive secondary study right after the primary bending strength test of a new form of U-shape hybrid composite beam is a cyclic seismic test of U-shape hybrid composite beam and column conncetion. Three specimens are built for the variables which are kinds of columns, depth of beam, continuity or discontinuity of upper plate of beam, and a number of steel bars of end-beam. Kinds of columns are a reinforcement concrete column and a ACT column of CFT shape, and beam depth are 300, and 500 mm. Detail of connection is bolt connection with using a short bracket that is commonly use. As the result, deformability of 2~4% is ensured the floor displacement angle. If it is the negative moment, the maximum moment shows that its capacity is above the nominal moment.

Load carrying capacity of Structural Composite Hybrid System (Green Frame) (철골 프리캐스트 콘크리트 합성보 성능 분석 연구)

  • Hong, Won-Kee;Kim, Sun-Kuk;Kim, Seung-Il
    • KIEAE Journal
    • /
    • v.10 no.1
    • /
    • pp.25-31
    • /
    • 2010
  • An experimental investigation of composite beams composed of wide flange steel and precast concrete is presented. The bottom flange of the steel section is encased in precast concrete. The composite beams tested in this study were designed to reduce the depth of the slab and beam. The slabs are constructed on top of the edges of the Structural Composite Hybrid System, instead of on top of the steel flange, decreasing the depth of the beams. When concrete is cast on the metal deck plate located on the edges of the precast concrete, the weight of the concrete slabs and other construction loads must be supported by the contacts between the steel and the precast concrete. This interface must not exhibit bearing failures, shear failures, and failures caused by torque due to the loading of the precast concrete. When the contact area between the concrete and the bottom flange of the steel beam is small, these failures of the concrete are likely and must be prevented. The premature failure of precast concrete must not also be present when the weight of the concrete slabs and other construction loads is loaded. This paper presents a load carrying capacity of Structural Composite Hybrid System in order to observe the failure mode. The symmetrically distributed loading that caused the failure of the composite beam was found. The paper also provides design recommendations of such type of composite structure.

Environmental Friendly Construction Process of Composite Beam and its Application (친환경 층고 절감형 합성보의 시공 Process 및 시공사례)

  • Hong, Won-Kee;Park, Seon-Chee;Lee, Kyoung-Hun;Kim, Jeom-Han;Lee, Ho-Chan;Hwang, Yun-Ha
    • KIEAE Journal
    • /
    • v.7 no.6
    • /
    • pp.107-112
    • /
    • 2007
  • Recently hybrid beam system is widely used because it has many structural advantages such as short construction period and low story height etc. Generally steel wide flange beam exposure type and embedded type hybrid beams are constructed. Even though exposure hybrid beam is easily constructed, the fire proofing protection process is necessary because steel wide flange beam cannot resist to fire itself. Story height reduction type hybrid beam, which is introduced hybrid beam in this paper, does not need fire proofing protection process because it is constructed as a fully embedded type hybrid beam. Developed construction process and actual construction cases of story height reduction type hybrid beam were introduced in this study.

Flexural capacity evaluation of hybrid composite beam using high strength steel (고강도강재를 적용한 하이브리드 합성보의 휨성능 평가)

  • Kim, Dae-Hee;Lee, Kyung-Koo;Kim, Young-Gi;Min, Kyung-Cheol;Byeon, Tae-Woo;Joo, Eun-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.146-147
    • /
    • 2022
  • Exposed composite beams composed of H-beams and concrete slabs are generally used in building structures because of their excellent economics and flexural strength. However, deep beams used under large load often make difficulties in construction. In this study, an exposed composite beam with high strength steel (SM460) used in the bottom flange of built-up H-shaped beam, so-called S-Beam, was proposed in order to reduce beam depth. And its positive and negative flexural strengths were experimentally evaluated. The test results showed that S-Beam has excellent flexural strength and ductility.

  • PDF