• 제목/요약/키워드: Hybrid coating

검색결과 316건 처리시간 0.021초

고정형 스크류 혼합 방식을 이용한 초속경 도막방수층 에어 셀 구조의 수증기투과성에 관한 연구 (A Stud on the Water Vapor Permeability of Air Cell Structure of Ultra Rapid Harding Membrane Waterproofing Using Fixed Screw Hybrid Method)

  • 김윤호;김현민;박진상;송제영;오상근
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 춘계 학술논문 발표대회
    • /
    • pp.225-226
    • /
    • 2013
  • Existing polyurethane membrane waterproofing has been raised defects such as heaving. Therefore, We will be utilizing as the basic experimental data by the water vapor permeability test to the air cell structure of ultra rapid harding membrane waterproofing using the static mixing system in this study.

  • PDF

Hybrid 코팅에 의한 나노컴포지트 코팅의 특성 (Properties of nanocomposite coatings by Hybrid coating)

  • 이경명;이재환;정봉용
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 춘계학술대회 논문집
    • /
    • pp.76-76
    • /
    • 2015
  • PVD에 의한 증착 대상 물질인 Ti, AlSi, Cr 및 각각의 타겟 전류, 바이어스, 압력 조건 들을 설계하여 적용시켰으며 PECVD와 CBC 코팅을 조합하여 발생되는 새로운 나노 멀티박막의 특성을 본 연구에서는 시험분석 및 평가하였다. 코팅층 깊이에 따른 조성 변화는 XPS를 이용하였으며 미세조직 및 표면 상태는 FE-SEM을 이용한 정밀 분석을 실시하였다. 또한, 박막의 경도는 나노인덴터를 이용하여 박막 자체의 경도만을 분석하였다. 한편, Pin-on-disk 방식의 마모시험기를 이용하여 표면조도와 상대재의 처리 상태에 따른 마찰계수를 시험 평가하였다.

  • PDF

Synthesis of $SiO_2$ nanoparticles self-assembled thin film by organic.inorganic hybrid method

  • Hu, Yi;Lyu, Jhong-Ming;Liu, Tung-Cheng;Liu, Jiun-Shing
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1538-1541
    • /
    • 2009
  • Amphiphobic thin films for touched panel application was prepared by $SiO_2$ nanoparticles self-assembled nanostructure. Silicon dioxide nano spheres were prepared by sol-gel method and well dispersed in a solution with surfacants of low surface energy. Nanostrcture thin films were obtained by spin coating technologies.

  • PDF

하이브리드 공정을 이용한 Cr-Mo-Si-N 코팅의 합성 및 기계적 성질 (Syntheses and mechanical properties of Cr-Mo-Si-N coatings by a hybrid coating system)

  • 이정두;김광호
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2008년도 추계학술대회 초록집
    • /
    • pp.86-87
    • /
    • 2008
  • 4성분계 Cr-MO-Si-N코팅은 하이브리드 시스템에 아르곤, 질소 가스를 주입하여 스테인리스 기판과 실리콘 웨이퍼에 증착시킨다. XRD, XPS, HRTEM을 이용해 Cr-MO-Si-N코팅의 성분을 분석하고 Si의 함량이 12.1at.%일때 50GPa의 강도가 나오고 이것은 33GPa의 강도Cr-MO-N코팅보다 크게 향상된 것이다.

  • PDF

유전가열물질을 코팅한 활성탄소섬유의 휘발성 유기화합물 흡착 및 마이크로파 인가에 의한 탈착 연구 (A Study on Adsorption of Volatile Organic Compound by Activated Carbon Fiber Coated with Dielectric Heating Element and Desorption by Applying Microwave)

  • 김상국;장예림
    • 한국대기환경학회지
    • /
    • 제25권2호
    • /
    • pp.122-132
    • /
    • 2009
  • Adsorption of toluene by activated carbon fiber (ACF) coated with dielectric heating element and desorption by applying microwave were investigated. In order to prepare adsorbent so that VOC can be desorbed by microwave heating, fine dielectric heating element with nano size was coated on the surface of the ACF using hybrid binder. Eight adsorbents (ACF-DHE, Activated Carbon Fiber coated with Dielectric Heating Element) were prepared with different amount of dielectric heating element, kinds of hybrid binder, and solvent. In order to investigate adsorption characteristics, BET surface area, pore volume, and average pore size were measured for each adsorbent including ACF. Breakthrough experiments with toluene concentration, flow rate, bed length using fixed bed reactor were performed to investigate adsorbality of adsorbent, and results were compared with that of the ACF. Desorption reactor was constructed with modified microwave oven to investigate heating effect on ACF-DHE by applying microwave power. Each adsorbent saturated with toluene were put into desorption reactor. Composition of desorbed gas generated by applying controlled microwave power to reactor was measured. Up to now, hot air desorption method has been used. Experimental results showed that desorption method with new adsorbent prepared by coating dielectric heating element on ACF can be used for industrial application.

Carbon nanotube/silicon hybrid heterojunctions for photovoltaic devices

  • Castrucci, Paola
    • Advances in nano research
    • /
    • 제2권1호
    • /
    • pp.23-56
    • /
    • 2014
  • The significant growth of the Si photovoltaic industry has been so far limited due to the high cost of the Si photovoltaic system. In this regard, the most expensive factors are the intrinsic cost of silicon material and the Si solar cell fabrication processes. Conventional Si solar cells have p-n junctions inside for an efficient extraction of light-generated charge carriers. However, the p-n junction is normally formed through very expensive processes requiring very high temperature (${\sim}1000^{\circ}C$). Therefore, several systems are currently under study to form heterojunctions at low temperatures. Among them, carbon nanotube (CNT)/Si hybrid solar cells are very promising, with power conversion efficiency up to 15%. In these cells, the p-type Si layer is replaced by a semitransparent CNT film deposited at room temperature on the n-doped Si wafer, thus giving rise to an overall reduction of the total Si thickness and to the fabrication of a device with cheaper methods at low temperatures. In particular, the CNT film coating the Si wafer acts as a conductive electrode for charge carrier collection and establishes a built-in voltage for separating photocarriers. Moreover, due to the CNT film optical semitransparency, most of the incoming light is absorbed in Si; thus the efficiency of the CNT/Si device is in principle comparable to that of a conventional Si one. In this paper an overview of several factors at the basis of this device operation and of the suggested improvements to its architecture is given. In addition, still open physical/technological issues are also addressed.

SO2 제거를 위한 유전체 장벽 방전 - 광촉매 복합 공정에서의 입자 형성과 성장 (Particle Formation and Growth in Dielectric Barrier Discharge - Photocatalysts Hybrid Process for SO2 Removal)

  • 나소노바 안나;김동주;김교선
    • 산업기술연구
    • /
    • 제30권A호
    • /
    • pp.127-132
    • /
    • 2010
  • We analyzed the effects of several process variables on the $SO_2$ removal and particle growth by the dielectric barrier discharge - photocatalysts hybrid process. In this process, $SO_2$ was converted into the ammonium sulfate ($(NH_4)_2SO_4$) particles. The size and crystallinity of ammonium sulfate particles were examined by using TEM and XRD analysis. The dielectric barrier discharge reactor consisted of two zones: the first is for plasma generation and the second is for ammonium sulfate particles formation and growth. The first zone of reactor was filled with glass beads as a dielectric material. To enhance $SO_2$ removal process, the $TiO_2$ photocatalysts were coated on glass beads by dip-coating method. As the voltage applied to the plasma reactor or the pulse frequency of applied voltage increases, the $SO_2$ removal efficiency increases. Also as the initial concentration of $SO_2$ decreases or as the residence time increases, the $SO_2$ removal efficiency increases. $(NH_4)_2SO_4$ particles continue to grow by particle coagulation and surface reaction, moving inside the reactor. Larger particles in site are produced according to the increase of residence time or $SO_2$ concentrations.

  • PDF

유-무기 하이브리드 재료와 자외선 흡수제의 배합에 의한 자외선 차단 코팅 (UV Blocking Coatings by Combination of Organic-inorganic Hybrid Materials and UV absorbers)

  • 유동식;이지호;하진욱
    • 한국산학기술학회논문지
    • /
    • 제7권6호
    • /
    • pp.1296-1301
    • /
    • 2006
  • 눈은 자외선과 가시광선에 노출되어 있다. 눈은 자외선 노출에 해로우므로 모든 자외선으로부터 눈을 보호해야 한다. 본 연구에서는 자외선 차단을 위해 투명 플라스틱에 유-무기 하이브리드 재료와 자외선 흡수제의 배합에 의한 자외선 차단 코팅하였고, PMMA, CR 39 및 PC기재에 적용하여 자외선 차단 효과를 조사하였다. 자외선 흡수제의 양이 증가할수록 자외선의 투과도는 낮았다. PMMA의 경우 자외선 투과도를 현저히 감소시켰으며 CR 39에서도 자외선 차단 효과가 있는 것으로 나타났다. 한편, PC자체에서는 자외선 차단효과가 있는 것으로 평가되었다. CR 39 렌즈의 부착력, 내약품성, 내온수성은 우수하였고, 연필 경도의 경우 4H였으며 내마모성은 좋지 않았다.

  • PDF

유기-무기 하이브리드 압전 나노복합체 기반의 플렉서블 에너지 하베스터 제작 및 발전성능 평가 (Flexible Energy Harvester Made of Organic-Inorganic Hybrid Piezoelectric Nanocomposite)

  • 권유정;현동열;박귀일
    • 한국재료학회지
    • /
    • 제29권6호
    • /
    • pp.371-377
    • /
    • 2019
  • A flexible piezoelectric energy harvester(f-PEH) that converts tiny mechanical and vibrational energy resources into electric signals without any restraints is drawing attention as a self-powered source to operate flexible electronic systems. In particular, the nanocomposites-based f-PEHs fabricated by a simple and low-cost spin-coating method show a mechanically stable and high output performance compared to only piezoelectric polymers or perovskite thin films. Here, the non-piezoelectric polymer matrix of the nanocomposite-based f-PEH is replaced by a P(VDF-TrFE) piezoelectric polymer to improve the output performance generated from the f-PEH. The piezoelectric hybrid nanocomposite is produced by distributing the perovskite PZT nanoparticles inside the piezoelectric elastomer; subsequently, the piezoelectric hybrid material is spin-coated onto a thin metal substrate to achieve a nanocomposite-based f-PEH. A fabricated energy device after a two-step poling process shows a maximum output voltage of 9.4 V and a current of 160 nA under repeated mechanical bending. Finite element analysis(FEA) simulation results support the experimental results.