1038, Ap-40

Preparation of hybrid coating film between magneto-optical and hologram layers

Teruyoshi O. HIRANO¹, Tae-Youb KIM^{1,2}, Yeong-Dae HONG², Yohtaro YAMAZAKI³ and Masanori ABE¹

INTRODUCTION Bismuth substituted yttrium iron garnet (Bi-YIG) is the most excellent magneto-optical material because it exhibits huge Faraday rotation [1,2]. We have been studying the preparation process and applications of Bi-YIG nanoparticles and their coating films [3,4]. In this study we will propose a hybrid material of magneto-optical coating layer and hologram sheet film.

EXPERIMENTS AND RESULTS Bi_{1.8}Y_{1.2}Fe₅O₁₂ particle was prepared by coprecipitation and annealing processes [3]. The nanoparticles were mixed with a cyclohexanone and a dispersant. Then the mixtures were milled by planetary milling machine with 48 h. The magnetic fluids of Bi-YIG nanoparticles were coated by a rod coater on a plastic film which has preformative hologram images. The magneto-optical hologram (MO-hologram) film were obtained (Fig.1). Fig.2 shows the magneto-optical contrast observed with the MO-hologram film. The MO-hologram film is a flexible and low cost magneto-optical material. We will be present film form magneto-optical materials on the conference.

References

- [1] P. Hansen and J.-P. Krumme, *Thin Solid Films*, 114, pp.69-107, (1984).
- [2] D. Shen, T. Du, Y. Zhou, M. Zhang, B. Cheng and W. Zhang, J. Magn. Magn. Mater., 135, pp. 241-250, (1994)
- [3] T. Hirano, T. Namikawa and Y. Yamazaki, Denki Kagaku, 64, pp. 307-310, (1996)
- [4] Y. Yamazaki, T. Namikawa, T. Hirano and K. Yoshida, *JOURNAL DE PHYSIQUE IV*, C1-543-544, (1997)

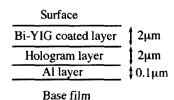
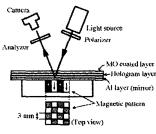



Fig.1. Stack of magneto-optical hologram sheet.

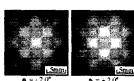


Fig. 2 Schematic diagram of the ptical configuration used for the observation of magneto-optical contrasts; ϕ : offset angle of analyzer.

¹ Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1 O-okayama, Meguro-ku, Tokyo 152-8552, Japan

Department of Advanced Materials, Kosin University, 149-1 Dongsam-dong, Youngdo-gu, Busan 606-701 Korea
Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259, Nagatsuta, Midori-ku, Yokohama 226-8502, Japan

^{*}Corresponding author: e-mail: tykim@pe.titech.ac.jp, Phone: +81 3 5734 2199, Fax: +81 3 5734 2906