• Title/Summary/Keyword: Hybrid Vehicle

Search Result 867, Processing Time 0.023 seconds

A Study on the Design of Flat-Type IPMSM in Parallel Hybrid Traction Application (병렬형 하이브리드 구동용 매입형 영구자석동기전동기 설계에 대한 연구)

  • Kim Ki-Nam;Yang Hai-Won
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.12
    • /
    • pp.718-724
    • /
    • 2004
  • This study investigates the design factors of Interior Permanent Magnet Synchronous Motor(IPMSM) which is applied to Hybrid electric vehicle as a driving power. Recently, there are many studies of IPMSM for application to Hybrid Electric Vehicle, because IPMSM has characteristics of high torque, high power density and high efficiency which come from reluctance torque due to difference of inductance as well as magnet torque. This study analyzes the inductance and design characteristics of IPMSM by using finite element method and focuses on design and analysis of IPMSM which can operates with high efficiency at low speed range. For this embodiment, magnet shape is changed from conventional block type to arc type without any change of outline dimension of motor and this change of magnet shape makes it possible to increase back EMF and sinusoidal waveform. Analysis results are verified by test of improved and embodied motor. As a test result , increased back EMF and sharply decrease of harmonics are secured and through this contribution of reduced fuel consumption of Hybrid electric vehicle is expected.

A Hybrid CBPWM Scheme for Single-Phase Three-Level Converters

  • Wang, Shunliang;Song, Wensheng;Feng, Xiaoyun;Ding, Rongjun
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.480-489
    • /
    • 2016
  • A novel hybrid carrier-based pulse width modulation (CBPWM) scheme that combines unipolar and dipolar modulations is proposed for single-phase three-level rectifiers, which are widely applied in railway traction drive systems. The proposed CBPWM method can satisfy the volt-second balancing principle in the complete modulation index region through overmodulation compensation. The modulation scheme features two modulation modes: unipolar and dipolar. The operation range limits of these modulation modes can be modified by changing the separation coefficient. In comparison with the traditional unipolar CBPWM, the proposed hybrid CBPWM scheme can provide advantageous features, such as lower high-order harmonic distortion of the line current and better utilization of switching frequency. The separation coefficient value is optimized to achieve the maximum utilization of these advantages. The experimental results verify the feasibility and effectiveness of the proposed hybrid CBPWM scheme.

A Vehicle Routing Problem Which Considers Hard Time Window By Using Hybrid Genetic Algorithm (하이브리드 유전자알고리즘을 이용한 엄격한 시간제약 차량경로문제)

  • Baek, Jung-Gu;Jeon, Geon-Wook
    • Journal of the military operations research society of Korea
    • /
    • v.33 no.2
    • /
    • pp.31-47
    • /
    • 2007
  • The main purpose of this study is to find out the best solution of the vehicle routing problem with hard time window by using both genetic algorithm and heuristic. A mathematical programming model was also suggested in the study. The suggested mathematical programming model gives an optimal solution by using ILOG-CPLEX. This study also suggests a hybrid genetic algorithm which considers the improvement of generation for an initial solution by savings heuristic and two heuristic processes. Two heuristic processes consists of 2-opt and Or-opt. Hybrid genetic algorithm is also compared with existing problems suggested by Solomon. We found better solutions rather than the existing genetic algorithm.

A Development of Parallel Type Hybrid Drivetrain System for Transit Bus Part 2 : A Development of Advanced Shift Control Algorithm for Hybrid Vehicle with Automated Manual Transmission (버스용 병렬형 하이브리드 동력전달계의 개발(II) 제2편 : 자동화변속기가 장착된 하이브리드 차량의 향상된 변속 제어 알고리듬 개발)

  • 조한상;조성태;이장무;박영일
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.5
    • /
    • pp.96-106
    • /
    • 1999
  • In this study, the advanced shift control algorithm for parallel type hybrid drivetrain system with automated manual transmission(AMT) is proposed. The AMT can be easily realized by mounting the pneumatic actuators and sensors on the clutch and shift levers of the conventional manual transmission. By using the electronic-controlled AMT, engine and induction machine, it is possible to achieve the integrated control of overall system for the efficiency and the performance of the vehicle. Performing the speed control of the induction machine and the engine, the synchronization at gear shifting and the smooth engagement of clutch can be guaranteed. And it enables to reduce the shift shock and shorten the shift time. Hence, it results in the improvement of shift quality and the driving comfort of the vehicle. Dynamometer-based experiments are carried out to prove the validity of the proposed shift control algorithm.

  • PDF

A Control Algorithm for Highly Efficient Operation of Auxiliary Power Unit in a Series Hybrid Electric Bus (직렬형 하이브리드 버스에서 보조동력장치의 고효율 작동을 위한 제어 알고리즘)

  • 함윤영;송승호;민병문;노태수;이재왕;이현동;김철수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.5
    • /
    • pp.170-175
    • /
    • 2003
  • A control algorithm is developed for highly efficient operation of auxiliary power unit (APU) that consists of a diesel engine and a directly coupled induction generator in series hybrid electric Bus (SHEB). In a series hybrid configuration the APU supplies the electric power needed for maintaining the state of charge (SOC) of the battery unit in various conditions of vehicle operation. As the rotational speed of generator does not depend on the vehicle speed, an optimized operation of engine-generator unit based on the efficiency map of each component can be achieved. The output torque of diesel engine can be controlled by the amount of fuel injection, and the power converted from mechanical to electrical energy can be adjusted by generate control unit (GCU) using the decoupling vector control of torque and flux. As for the given reference of the generating power, the multiply of speed and torque, many combinations of operating speed and torque are possible. The algorithm decides the new operating point based on the engine efficiency map and generator characteristic curve. During the transition of operating points, the speed controller saturation is avoided using variable limit and filtering of generator torque reference. A test rig and SHEB consist of a 1.5L diesel engine and a 30kw induction generator are constructed by Hyundai Motor Company.

DYNAMIC SIMULATION MODEL OF A HYBRID POWERTRAIN AND CONTROLLER USING CO-SIMULATION-PART II: CONTROL STRATEGY

  • Cho, B.;Vaughan, N.D.
    • International Journal of Automotive Technology
    • /
    • v.7 no.7
    • /
    • pp.785-793
    • /
    • 2006
  • The topic of this study is the control strategy of a mild hybrid electric vehicle (HEV) equipped with a continuously variable transmission (CVT). A brief powertrain and vehicle configuration is introduced followed by the control strategy of the HEV with emphasis on two key parts. One of them is an ideal operating surface (IOS) that operates the CVT powertrain optimally from the viewpoint of the tank-to-wheel efficiency. The other is a charge sustaining energy management to maintain the battery state of charge (SOC) within an appropriate level. The fuel economy simulation results of the HEV over standard driving cycles were compared with those of the baseline vehicle. Depending on the driving cycle, 1.3-20% fuel saving potential is predicted by the mild hybridisation using an integrated starter alternator (ISA). The detailed energy flow analysis shows that the majority of the improvement comes from the idle stop function and the benefits for electrical accessories. Additionally, the differences between the initial and the final SOC are in the range $-1.0{\sim}+3.8%$ in the examined cycle.

Development of FE-SEA Hybrid Model for the Prediction of Vehicle Structure-borne Noise at Mid-frequencies (승용차량의 중주파수 대역 구조기인 소음예측을 위한 FE-SEA 하이브리드 모델 개발)

  • Yoo, Ji Woo;Chae, Ki-Sang;Charpentier, A.;Lim, Jong Yun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.8
    • /
    • pp.606-612
    • /
    • 2014
  • Vehicle simulation models for noise and vibration prediction have been developed so far generally in two schemes. One is FE models generally used for problems below 200 Hz such as booming noise, and the other is SEA models for high frequencies of more than 1 kHz, representatively related to sound packages. There have been many researches to develop a simulation model for 200~1000 Hz, so-called mid-frequency region, and this paper shows one practical result that covers the trimmed body of a sedan vehicle. The simulation model is developed based on an FE model, and then FE elements at some areas are substituted with SEA elements to reduce DOFs. SEA panels are described by modal density, radiation efficiency, stiffness and damping characteristics that are found from some numerical assessments. Sound packages are modeled similarly as a conventional SEA model. The results obtained from the hybrid model were compared to experimental results. Predicted pressure and vibrational velocity generally show a good agreement. The developed simulation model and related technology are successfully being used in vehicle development process.

A Study on the Effect of the Pressure Control of Cooperative Control System with Regenerative Brake for a Military SHEV (군용 직렬형 하이브리드 전기 차량을 위한 회생제동 협조제어 시스템의 압력제어 영향에 관한 연구)

  • Jeong, Soonkyu;Choi, Hyunseok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.517-525
    • /
    • 2016
  • In this research, the effect of the pressure control of cooperative control system with regenerative brake for a military series hybrid-electric vehicle was studied. A cooperative control system with regenerative brake was developed to maximize regenerative energy from electric traction motors of the vehicle. However, the pressure control method of the system was modified to solve a time delay problem and it deteriorates the performance of the system. A Simulink model including the hybrid-electric components, the cooperative control system with regenerative brake, and the vehicle dynamics was developed and used to find a solution. The regenerative energy ratio with respect to the whole brake energy was increased in this research from less than 60 % to over 80 %.

Component Sizing for the Hybrid Electric Vehicle (HEV) of Our Own Making Using Dynamic Programming (동적계획법을 이용한 자작 하이브리드 자동차의 용량 매칭)

  • Kim, Gisu;Kim, Jinseong;Park, Yeong-il
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.24 no.5
    • /
    • pp.576-582
    • /
    • 2015
  • Generally, the fuel economy of hybrid electric vehicle (HEV) is effected by the size of each component. In this study the fuel economy for HEV of our own making is evaluated using backward simulator, where dynamic programming is applied. In a competition, the vehicle is running through the road course that includes many speed bumps and steep grade. Therefore, the new driving cycle including road grade is developed for the simulation. The backward simulator is also developed through modeling each component. A performance map of engine and motor for component sizing is made from the existing engine map and motor map adapted to the HEV of our own making. For optimal component sizing, the feasible region is defined by restricting the power range of power sources. Optimal component size for best fuel economy is obtained within the feasible region through the backward simulation.

A Study on Educational Contents of Hybrid Electric Vehicle Using Real Time Monitoring System (실시간 모니터링 시스템을 이용한 하이브리드 자동차 교육용 콘텐츠에 관한 연구)

  • Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.443-448
    • /
    • 2018
  • Recently, Hybrid Electric Vehicle(: HEV) is in the spotlight to global warming caused by carbon dioxide and emission reduction. HEV consists of a combination of mechanical engine and electric motor system. The flow of energy required to drive a HEV depends on the driving conditions of the vehicle. In this paper, we study the contents of HEV education using real-time monitoring system. A real-time monitoring system consisting of hardware and virtual programs is used to simulate the overall operation of a HEV through simulations according to driving conditions and to explain how to learn through hardware.