• 제목/요약/키워드: Hybrid Stress Analysis

검색결과 259건 처리시간 0.032초

Buckling analysis of functionally graded hybrid composite plates using a new four variable refined plate theory

  • Fekrar, A.;El Meiche, N.;Bessaim, A.;Tounsi, A.;Adda Bedia, E.A.
    • Steel and Composite Structures
    • /
    • 제13권1호
    • /
    • pp.91-107
    • /
    • 2012
  • In this research, mechanical buckling of hybrid functionally graded plates is considered using a new four variable refined plate theory. Unlike any other theory, the number of unknown functions involved is only four, as against five in case of other shear deformation theories. The theory presented is variationally consistent, does not require shear correction factor, and gives rise to transverse shear stress variation such that the transverse shear stresses vary parabolically across the thickness satisfying shear stress free surface conditions. The plate properties are assumed to be varied through the thickness following a simple power law distribution in terms of volume fraction of material constituents. Governing equations are derived from the principle of minimum total potential energy. The closed-form solution of a simply supported rectangular plate subjected to in-plane loading has been obtained by using the Navier method. The effectiveness of the theories is brought out through illustrative examples.

평면 탄성문제의 트래프츠 유한요소법과 캐비티요소의 구성 (Trefftz Finite Element Method and Cavity Element Formulationfor Plane Elasticity Problems)

  • 임장근;송관섭
    • 대한기계학회논문집A
    • /
    • 제20권1호
    • /
    • pp.163-171
    • /
    • 1996
  • For the effective analysis of two dimensional plane problems, Treffiz finite elements and cavity elements have been proposed. These element matrix equaitons were formulated on the basis of hybrid variational principle and Treffiz function sets derived consitstently from the complex theoy of plane elasticity. In order to suggest the accuracy chatacteristics of the proposed Treffiz elements typical plane problems were analyzed and these results were compared with ones obtained by using the conveintional displacement type elements. The accuracy of the proposed elements is less sensitive to the element size and shape than the conventional displacement type elements. These elements, being able to be formed with multi-nodes, give the convenient modeling of an analytic domain. The cavity elements give the comparatively exact values of stress concentration factors of stress intensity factors and can be effectively used for the analysis of mechanical stuctures containing various cavities.

난류모형을 적용한 엔진 연료실의 유동해석 (Flow Analysis in the Fuel Chamber of Engine by Applying Turbulent Models)

  • 곽승현
    • 한국항해항만학회지
    • /
    • 제30권5호
    • /
    • pp.369-374
    • /
    • 2006
  • 복잡한 연료실 내의 유동현상을 난류모형을 적용하여 해석하였다. 적용한 모형은 $k-\varepsilon,\;k-\omega$, spalart-allmaras, reynolds stress이고, 연로실내의 격자는 혼합격자(hybrid grid) 이다. 속도벡터, 압력분포, 반복계산(iteration)에 의한 잔류치(residual), 동력학적 양정(dynamic head) 등을 모사하였다. 4개의 난류모형을 연료실 유동에 적용하였다. 3차원 수치실험에 앞서, 수치검증을 위하여 2차원 물체 주위의 점성유동을 $k-\varepsilon$ 난류모형을 적용하여 모사하였고 항력계수를 비교하였다.

직무 스트레스가 안전 순응 및 참여 행동에 미치는 영향 관계에서 직무 만족과 직무 몰입의 다중 매개 효과 분석 (Analysis of Multiple Mediation Effects of Job Satisfaction and Job Commitment in Relationship of Job Stress on Safety Compliance and Participation Behaviors)

  • 이지숙;옥승용
    • 한국안전학회지
    • /
    • 제39권1호
    • /
    • pp.114-122
    • /
    • 2024
  • This study aimed to identify the multiple mediation effects of job satisfaction and job commitment on the relationships between job stress and workers' safety behavior in terms of compliance and participation, in which the multiple mediation effects are a hybrid of parallel and serial mediating relationships. The multiple mediation model was analyzed using the bootstrapping method through the PROCESS macro tool in SPSS. The results showed that job stress negatively affects job satisfaction, job commitment, and workers' safety behavior, and the relationship between job stress and safety behavior is mediated by both job satisfaction and job commitment. The serial mediation effects of job satisfaction and job commitment were also found to be statistically significant in the regression relationship between job stress and safety behavior. Further analysis of the compliance and participation subdimensions of safety behavior showed similar results. Specifically, the serial mediation effects of job satisfaction and job commitment on participation and compliance behavior were further supported; however, the mediation effect of job satisfaction was not significant, whereas that of job commitment did remain significant. Further research is needed to determine if the mediation effect of job satisfaction found in this study can be extended and generalized to workers in various fields and industries.

Preliminary design and structural responses of typical hybrid wind tower made of ultra high performance cementitious composites

  • Wu, Xiangguo;Yang, Jing;Mpalla, Issa B.
    • Structural Engineering and Mechanics
    • /
    • 제48권6호
    • /
    • pp.791-807
    • /
    • 2013
  • Ultra High Performance Cementitious Composites with compressive strength 200MPa (UHPCC-200) is proposed for the structural design of super high hybrid wind turbine tower to gain durability, ductility and high strength design objectives. The minimal wall thickness is analyzed using basic bending and compression theory and is modified by a toque influence coefficient. Two cases of wall thickness combination of middle and bottom segment including varied ratio and constant ratio are considered within typical wall thickness dimension. Using nonlinear finite element analysis, the effects of wall thickness combinations with varied and constant ratio and prestress on the structural stress and lateral displacement are calculated and analyzed. The design limitation of the segmental wall thickness combinations is recommended.

An iterative hybrid random-interval structural reliability analysis

  • Fang, Yongfeng;Xiong, Jianbin;Tee, Kong Fah
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1061-1070
    • /
    • 2014
  • An iterative hybrid structural dynamic reliability prediction model has been developed under multiple-time interval loads with and without consideration of stochastic structural strength degradation. Firstly, multiple-time interval loads have been substituted by the equivalent interval load. The equivalent interval load and structural strength are assumed as random variables. For structural reliability problem with random and interval variables, the interval variables can be converted to uniformly distributed random variables. Secondly, structural reliability with interval and stochastic variables is computed iteratively using the first order second moment method according to the stress-strength interference theory. Finally, the proposed method is verified by three examples which show that the method is practicable, rational and gives accurate prediction.

Basic Design of Bearingless Switched Reluctance Motor with Hybrid Stator poles

  • Wang, Huijun;Liu, Jianfeng;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권3호
    • /
    • pp.336-346
    • /
    • 2012
  • In this paper, a novel bearingless switched reluctance motor (BLSRM) with hybrid stator poles is proposed. The structure and operating principle are presented. In order to describe the design methodology clearly, analytical torque and radial force models are established. Further, basic design procedure is described. The numbers of phases and poles have important influence on the selection of structure. These effects, along with sizing of machine envelope and internal dimensions, make the machine design an insight-intensive effort. Effect of pole arcs and air-gap length on the production of torque and radial force are analyzed in detail. Mechanical design factors such as hoop stress and first critical speed are also considered. Based on the above analysis, the characteristics of the proposed BLSRM are analyzed. A prototype motor is designed and manufactured. The validity of the proposed structure is verified by the experimental results.

위상이동 광탄성법과 멱급수형 응력함수를 이용한 인장시편 중앙 균열선단 주위 응력장 해석 (Analysis of Stress Distribution around a Central Crack Tip in a Tensile Plate Using Phase-Shifting Photoelasticity and a Power Series Stress Function)

  • 백태현
    • 비파괴검사학회지
    • /
    • 제29권1호
    • /
    • pp.1-9
    • /
    • 2009
  • 본 연구에서는 균열선단 주위의 응력장을 균열선단으로부터 멀리 떨어진 직선상에서 위상이동 광탄성법과 멱급수형 등각사상 맵핑함수를 이용하여 해석하였다. 해석된 광탄성 응력장을 실제의 광탄성프린지와 비교하였다. 정성적인 비교가 용이하도록 디지털 영상처리에 의해 등색프린지 패턴을 2배로 증식시키고, 증식된 프린지를 다시 세선 처리하여 서로 비교하였다. 정량적인 분석을 위하여 각각의 광탄성 측정 데이터와 계산된 프린지에 대한 퍼센트 오차와 멱급수형 응력함수의 항의 수에 따른 퍼센트 오차에 대한 표준편차를 비교하였다. 응력함수의 항의 수를 변화시켰을 때 표준편차를 계산하였다. 해석 결과 모드I 응력확대계수는 유한요소법과 경험식으로 계산한 값과 2% 이내로 근접하였다.

Static analysis of non-uniform heterogeneous circular plate with porous material resting on a gradient hybrid foundation involving friction force

  • Rad, A. Behravan;Farzan-Rad, M.R.;Majd, K. Mohammadi
    • Structural Engineering and Mechanics
    • /
    • 제64권5호
    • /
    • pp.591-610
    • /
    • 2017
  • This paper is concerned with the static analysis of variable thickness of two directional functionally graded porous materials (FGPM) circular plate resting on a gradient hybrid foundation (Horvath-Colasanti type) with friction force and subjected to compound mechanical loads (e.g., transverse, in-plane shear traction and concentrated force at the center of the plate).The governing state equations are derived in terms of displacements based on the 3D theory of elasticity, assuming the elastic coefficients of the plate material except the Poisson's ratio varying continuously throughout the thickness and radial directions according to an exponential function. These equations are solved semi-analytically by employing the state space method (SSM) and one-dimensional differential quadrature (DQ) rule to obtain the displacements and stress components of the FGPM plate. The effect of concentrated force at the center of the plate is approximated with the shear force, uniformly distributed over the inner boundary of a FGPM annular plate. In addition to verification study and convergence analysis, numerical results are displayed to show the effect of material heterogeneity indices, foundation stiffness coefficients, foundation gradient indices, loads ratio, thickness to radius ratio, compressibility, porosity and friction coefficient of the foundation on the static behavior of the plate. Finally, the responses of FG and FG porous material circular plates to compound mechanical loads are compared.

합성단면의 콘크리트 크리프 해석을 위한 이완계수법 (Stress Relaxation Coefficient Method for Concrete Creep Analysis of Composite Sections)

  • 연정흠;경태현;김다나
    • 콘크리트학회논문집
    • /
    • 제23권1호
    • /
    • pp.77-86
    • /
    • 2011
  • 복합구조의 합성단면에서 콘크리트 크리프변형은 합성단면에 추가 변형을 발생시키며, 장기변형의 일부 구속에 의한 응력이완은 콘크리트단면에 도입된 선압축응력의 심각한 손실을 초래할 수 있다. 이 논문에서는 복잡한 합성단면의 콘크리트 크리프변형에 대해 공학적인 목적에서 단순 해석이 가능한 이완계수법을 유도하고, 이완계수법에 요구되는 응력이완계수 식을 제안하였다. 이완계수법은 크리프계수와 합성단면의 환산단면특성 및 하중특성을 매개변수로 사용하는 균등 크리프계수 단계별계산법(CC-SSM)과 같은 방법으로 유도되었다. 제안된 이완계수 식에 의한 응력이완계법의 오차는 CC-SSM으로부터 평가된 이완계수법의 평균 응력이완계수에 의한 오차보다 향상되었으며, 자유상태에서 크리프변형에 대한 제안식에 의한 이완계수법 반응의 평균오차율은 3보다 크지 않은 크리프계수에 대해 1.2%보다 작으며, 99% 신뢰도에서 최대 3.3%이었다. 제안된 응력이완계수 식은 크리프변형에 대한 합성단면의 내부구속 정도를 반영하며, 외부구속 효과를 분석하기 위한 전산구조해석에서 응력이완계수가 적용된 유효탄성계수는 합성단면의 요소에 대한 강성 계산에 효율적으로 적용될 수 있다.