• Title/Summary/Keyword: Hybrid Sensor node

Search Result 43, Processing Time 0.026 seconds

Development of Acceleration-PZT Impedance Hybrid Sensor Nodes Embedding Damage Identification Algorithm for PSC Girders

  • Park, Jae-Hyung;Lee, So-Young;Kim, Jeong-Tae
    • Journal of Ocean Engineering and Technology
    • /
    • v.24 no.3
    • /
    • pp.1-10
    • /
    • 2010
  • In this study, hybrid smart sensor nodes were developed for the autonomous structural health monitoring of prestressed concrete (PSC) girders. In order to achieve the objective, the following approaches were implemented. First, we show how two types of smart sensor nodes for the hybrid health monitoring were developed. One was an acceleration-based smart sensor node using an MEMS accelerometer to monitor the overall damage in concrete girders. The other was an impedance-based smart sensor node for monitoring the local damage in prestressing tendons. Second, a hybrid monitoring algorithm using these smart sensor nodes is proposed for the autonomous structural health monitoring of PSC girders. Finally, we show how the performance of the developed system was evaluated using a lab-scaled PSC girder model for which dynamic tests were performed on a series of prestress-loss cases and girder damage cases.

A design of hybrid detection system with long term operating reliability in underwater (장기 동작 신뢰성을 고려한 수중 복합 탐지 시스템 설계)

  • Chung, Hyun-Ju
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.198-205
    • /
    • 2005
  • Recently, the systems using multiple sensors such as magnetic, acoustic and pressure sensor are used for detection of underwater objects or vehicles. Those systems have difficulty of maintenance and repair because they operate underwater. Thus, this paper describes a hybrid detection system with long term operating reliability. This has a multi-signal transmission structure to have a high reliability. First, a signal transmission & receiving part, which transfers data from underwater sensors to land and receive control message from land through optical cable, has 4 multi-path. Second, the nodes for signal transmission are connected dually each other with single-hop construction and sensors are connected to a couple of neighboring nodes. This enables the output signal to transmit from a node to the next node and the next but one node together. Also, the signal from a sensor can be transmitted to two nodes at the same time. Therefore, the system with this construction has high reliability in long term operation because it makes possible to transmit sensor data to another node which works normally although a transmission node or cable in system have some faults.

Energy-aware deploy method for mobile sensors in hybrid sensor network (하이브리드 센서 네트워크에서 에너지 효율적인 모바일 센서 배치)

  • Kim, Yon-Jun;Peter, Hoh
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10d
    • /
    • pp.791-795
    • /
    • 2006
  • 하이브리드 센서 네트워크에서 static sensor node들이 초기 배치된 후, coverage-hole을 결정하여, hole을 커버할 mobile sensor node들의 필요한 수 및 위치를 결정하고 배치하는 연구는 상당한 수준에 이르렀다. 그러나 mobile sensor node들을 호출하고 배치하는데 너무 많은 에너지를 소모하고 있다. 본 논문에서는 coverage-hole에서 mobile sensor node들을 호출하기 전에 mobile sensor node들을 최대한 coverage-hole에 가깝게 배치하여, 호출하는데 소요되는 에너지를 획기적으로 절감하였다.

  • PDF

Solar-powered multi-scale sensor node on Imote2 platform for hybrid SHM in cable-stayed bridge

  • Ho, Duc-Duy;Lee, Po-Young;Nguyen, Khac-Duy;Hong, Dong-Soo;Lee, So-Young;Kim, Jeong-Tae;Shin, Sung-Woo;Yun, Chung-Bang;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • v.9 no.2
    • /
    • pp.145-164
    • /
    • 2012
  • In this paper, solar-powered, multi-scale, vibration-impedance sensor node on Imote2 platform is presented for hybrid structural health monitoring (SHM) in cable-stayed bridge. In order to achieve the objective, the following approaches are proposed. Firstly, vibration- and impedance-based hybrid SHM methods are briefly described. Secondly, the multi-scale vibration and impedance sensor node on Imote2-platform is presented on the design of hardware components and embedded software for vibration- and impedance-based SHM. In this approach, a solar-powered energy harvesting is implemented for autonomous operation of the smart sensor nodes. Finally, the feasibility and practicality of the smart sensor-based SHM system is evaluated on a full-scale cable-stayed bridge, Hwamyung Bridge in Korea. Successful level of wireless communication and solar-power supply for smart sensor nodes are verified. Also, vibration and impedance responses measured from the target bridge which experiences various weather conditions are examined for the robust long-term monitoring capability of the smart sensor system.

An Energy and Delay Efficient Hybrid MAC Protocol for Multi-Hop Wireless Sensor Networks (멀티 홉 무선센서네트워크에서 에너지와 지연에 효율적인 하이브리드 MAC 프로토콜)

  • Jeon, Jun-Heon;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.471-476
    • /
    • 2015
  • In this paper, we propose an energy efficient hybrid MAC protocol for multi-hop wireless sensor networks. The proposed MAC protocol used a hybrid mechanism, in which contention-based MAC protocol and contention free MAC protocol are combined. The sensor nodes located far from the sink node usually send few data packet since they try to send measured data by themselves. So contention-based MAC protocol is useful among them. But other nodes located near sink node usually have lots of data packets since they plays as a relay node. Contention-based MAC protocol among them is not suitable. Using contention-based MAC protocol in heavy data traffic environment, packet collisions and transmission delay may increase. In this paper, slot assignment between sender nodes by sink node is used. The proposed mechanism is efficient in energy and latency. Results showed that our MAC protocol outperformed other protocol in terms of data packet delivery delay and energy consumption.

HDF: Hybrid Debugging Framework for Distributed Network Environments

  • Kim, Young-Joo;Song, Sejun;Kim, Daeyoung
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.222-233
    • /
    • 2017
  • Debugging in distributed environments, such as wireless sensor networks (WSNs), which consist of sensor nodes with limited resources, is an iterative and occasionally laborious process for programmers. In sensor networks, it is not easy to find unintended bugs that arise during development and deployment, and that are due to a lack of visibility into the nodes and a dearth of effective debugging tools. Most sensor network debugging tools are not provided with effective facilities such as real-time tracing, remote debugging, or a GUI environment. In this paper, we present a hybrid debugging framework (HDF) that works on WSNs. This framework supports query-based monitoring and real-time tracing on sensor nodes. The monitoring supports commands to manage/control the deployed nodes, and provides new debug commands. To do so, we devised a debugging device called a Docking Debug-Box (D2-Box), and two program agents. In addition, we provide a scalable node monitor to enable all deployed nodes for viewing. To transmit and collect their data or information reliably, all nodes are connected using a scalable node monitor applied through the Internet. Therefore, the suggested framework in theory does not increase the network traffic for debugging on WSNs, and the traffic complexity is nearly O(1).

An Energy-Efficient Hybrid Scheduling Technique for Real-time and Non-real-time Tasks in a Sensor Node (센서 노드에서 에너지 효율적인 실시간 및 비실시간 태스크의 혼합 스케줄링 기법)

  • Tak, Sung-Woo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1820-1831
    • /
    • 2011
  • When both types of periodic and aperiodic tasks are required to run on a sensor node platform with limited energy resources, we propose an energy-efficient hybrid task scheduling technique that guarantees the deadlines of real-time tasks and provides non-real-time tasks with good average response time. The proposed hybrid task scheduling technique achieved better performance than existing EDF-based DVS scheduling techniques available in the literature, the FIFO-based TinyOS scheduling technique, and the task-clustering based non-preemptive real-time scheduling technique.

A Weather Monitoring System for Local Area Using an Energy-balanced Hybrid WSN Protocol (에너지 균등 하이브리드 WSN 프로토콜 기반 국지 기상 관측 시스템)

  • Lee, Hyung-Bong;Chung, Tae-Yun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.9 no.4
    • /
    • pp.193-203
    • /
    • 2014
  • This paper implements a weather monitoring system based on wireless sensor network. The wireless sensor network protocol proposed in this paper adopts a TDMA styled MAC. The protocol is designed to balance the energy consumption among sensor nodes. Other purposes of the protocol are to avoid the hidden terminal problem in 2-hop star topology, and to allow a CSMA styled communication in a given time slot to support emergent messages. Also, this paper develops the hardware of sensor node, gateway and electric generator based on solar and windy energy. The test results on the implemented system show that the time slot of each node is shifted in circular manner to balance the waiting time for transmission, and the reliability of wireless communication is over 99%.

Enhanced Hybrid Routing Protocol for Load Balancing in WSN Using Mobile Sink Node

  • Kaur, Rajwinder;Shergi, Gurleen Kaur
    • Industrial Engineering and Management Systems
    • /
    • v.15 no.3
    • /
    • pp.268-277
    • /
    • 2016
  • Load balancing is a significant technique to prolong a network's lifetime in sensor network. This paper introduces a hybrid approach named as Load Distributing Hybrid Routing Protocol (LDHRP) composed with a border node routing protocol (BDRP) and greedy forwarding (GF) strategy which will make the routing effective, especially in mobility scenarios. In an existing solution, because of the high network complexity, the data delivery latency increases. To overcome this limitation, a new approach is proposed in which the source node transmits the data to its respective destination via border nodes or greedily until the complete data is transmitted. In this way, the whole load of a network is evenly distributed among the participating nodes. However, border node is mainly responsible in aggregating data from the source and further forwards it to mobile sink; so there will be fewer chances of energy expenditure in the network. In addition to this, number of hop counts while transmitting the data will be reduced as compared to the existing solutions HRLBP and ZRP. From the simulation results, we conclude that proposed approach outperforms well than existing solutions in terms including end-to-end delay, packet loss rate and so on and thus guarantees enhancement in lifetime.

Hybrid acceleration-impedance sensor nodes on Imote2-platform for damage monitoring in steel girder connections

  • Kim, Jeong-Tae;Park, Jae-Hyung;Hong, Dong-Soo;Ho, Duc-Duy
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.393-416
    • /
    • 2011
  • Hybrid acceleration-impedance sensor nodes on Imote2-platform are designed for damage monitoring in steel girder connections. Thus, the feasibility of the sensor nodes is examined about its performance for vibration-based global monitoring and impedance-based local monitoring in the structural systems. To achieve the objective, the following approaches are implemented. First, a damage monitoring scheme is described in parallel with global vibration-based methods and local impedance-based methods. Second, multi-scale sensor nodes that enable combined acceleration-impedance monitoring are described on the design of hardware components and embedded software to operate. Third, the performances of the multi-scale sensor nodes are experimentally evaluated from damage monitoring in a lab-scaled steel girder with bolted connection joints.