• Title/Summary/Keyword: Hybrid Propulsion System

Search Result 156, Processing Time 0.042 seconds

A Study on Power contorl for Hybrid electric propulsion system (하이브리드 전기 추진 시스템의 전력 제어에 관한 연구)

  • Oh, Jin-Seok;Jo, Kwan-Jun;Ham, Youn-Jae;Bae, Soo-Young;Lee, Ji-Young
    • Journal of Navigation and Port Research
    • /
    • v.32 no.10
    • /
    • pp.765-770
    • /
    • 2008
  • This paper presents the power control for the hybrid electric propulsion system. In this paper, the hybrid propulsion system consists cf the generator and battery as power supply system in ship. The hybrid control system is designed with energy saving algorithm for decreasing the power consumption of power supply system. This paper suggests the method to increase efficiency of hybrid electric propulsion system by developing battery charging system. The performance of power control system is analyzed with the experiment equipment for hybrid propulsion system, and the results showed a good property.

Efficiency Evaluation of a Hybrid Propulsion Fuel Cell Ship Based on AIS Data (항적 데이터에 기반한 하이브리드 추진 연료전지 선박의 효율 평가)

  • Donghyun Oh;Dae-Seung Cho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.3
    • /
    • pp.146-154
    • /
    • 2023
  • Efforts have been made to reduce the greenhouse gas emissions from ships by limiting the energy efficiency index, and net zero CO2 emission was proposed recently. The most ideal measure to achieve zero emission ship is electrification, and fuel cells are considered as a practical power source of the electrified propulsion system. The electric efficiency in the electrochemical reaction of fuel cells can be achieved up to 60% practically. The remaining energy is converted to heat energy but most of them are dissipated by cooling. In the author's previous research, a hybrid propulsion system utilizing not only electricity but also heat was introduced by combining electric motor and steam turbine. In this article, long term efficiency is evaluated for the introduced hybrid propulsion system by considering a virtual 24,000 TEU class container carrier model. To reflect a more practical operating condition, the actual navigation data of a similar real ship in the real world were collected from automatic identification system data and applied. From the result, the overall efficiency of the hybrid propulsion system is expected to be higher than a conventional electric propulsion fuel cell ship by 30%.

A Study on the Hybrid Propulsion System for Fishing Boat (어선용 하이브리드 추진시스템에 관한 연구)

  • Oh, Jin-Seok;Jo, Kwan-Jun;Park, Choung-Hwan;Ham, Youn-Jae;Kwak, Jun-Ho;Lee, Ji-Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.5
    • /
    • pp.677-683
    • /
    • 2008
  • The electric propulsion system us closely related with the economical efficiency of ship operation. Fuel efficiency is mainly decided by propulsion system such as diesel engine, propulsion motor and steam turbine. The hybrid propulsion system for fishing boat consists of diesel engine and battery as propulsion power source. This paper is to design battery capacity according to power consumption with ship operation condition, and to test the power consumption of model ship in the circulating water channel. As a result. it can be known that the optimum ship operation condition affects the fuel efficiency.

Gas Turbine Engine Based Hybrid Propulsion System Modeling and Simulation (가스터빈엔진 기반 하이브리드 추진시스템 모델링 및 시뮬레이션)

  • Lee, Bohwa;Kim, Chuntaek;Jun, Sangook;Huh, Jae-Sung;Kim, Jae-Hwan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.3
    • /
    • pp.1-9
    • /
    • 2022
  • The aircraft targeted in this study is a vertical take-off and landing aircraft with 4 to 5 passengers, and the propulsion system for the aircraft is a distributed hybrid propulsion system that uses a gas turbine engine and a battery pack as the main power source to supply the power required by multiple motors. In this study, a design/analysis platform for a hybrid propulsion system was developed using the MATLAB/Simulink program based on the preliminary design results. Through simulation analysis, the output characteristics and operating range of each power source according to the mission profile were confirmed, and through this, the feasibility of the preliminary design result was confirmed.

Development of a University-Based Simplified H2O2/PE Hybrid Sounding Rocket at KAIST

  • Huh, Jeongmoo;Ahn, Byeonguk;Kim, Youngil;Song, Hyunki;Yoon, Hosung;Kwon, Sejin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.512-521
    • /
    • 2017
  • This paper reports development process of a university-based sounding rocket using simplified hybrid rocket propulsion system for low-altitude flight application. A hybrid propulsion system was tried to be designed with as few components as possible for more economical, simpler and safer propulsion system, which is essential for the small scale sounding rocket operation as a CanSat carrier. Using blow-down feeding system and catalytic ignition as combustion starter, 250 N class hybrid rocket system was composed of three components: a composite tank, valves, and a thruster. With a composite tank filled with both hydrogen peroxide($H_2O_2$) as an oxidizer and nitrogen gas($N_2$) as a pressurant, the feeding pressure was operated in blowdown mode during thruster operation. The $MnO_2/Al_2O_3$ catalyst was fabricated for propellant decomposition, and ground test of propulsion system showed the almost theoretical temperature of decomposed $H_2O_2$ at the catalyst reactor, indicating sufficient catalyst efficiency for propellant decomposition. Auto-ignition of the high density polyethylene(HDPE) fuel grain successfully occurred by the decomposed $H_2O_2$ product without additional installation of any ignition devices. Performance test result was well matched with numerical internal ballistics conducted prior to the experimental propulsion system ground test. A sounding rocket using the developed hybrid rocket was designed, fabricated, flight simulated and launch tested. Six degree-of-freedom trajectory estimation code was developed and the comparison result between expected and experimental trajectory validated the accuracy of the developed trajectory estimation code. The fabricated sounding rocket was successfully launched showing the effectiveness of the simplified hybrid rocket propulsion system.

The Characteristics and Prospects of Hybrid Propulsion Systems for Unmanned Aerial Vehicle (무인기용 하이브리드 추진시스템의 특성 및 발전전망)

  • Park, Tosoon;Song, Jaeho;Kwon, Sejin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.554-559
    • /
    • 2017
  • Recently, the global attention is focused on the development of the renewal aero-propulsion systems proved in the air pollution, the noise, the great operational cost, safety and risks. Especially, various study are conducting for the development of the advanced high power to weight ratio aircraft through the significant reduction of fuel consumption and upgrade of the propulsion efficiency, using the alternative propulsion system developments such as hydrogen and solar power system. The hybrid propulsion system can be the representative propulsion system which get the power sources by combining the merits of two or more power sources. In this study, the advancement trends, characteristics, design method which can be applied to the renewal future UAV development.

  • PDF

Now and the future of Hybrid rocket propulsion system (하이브리드 로켓 추진기관의 현황과 개발방안)

  • Lee Junho;Choi Sunghan;Whang Jongsun;Choi Younggi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.79-82
    • /
    • 2005
  • The hybrid rocket has been known for over 50 years. It is safe and cheap but wasn't widely used for the deficit of low regression rate. However, the hybrid rocket propulsion system will replace a lot of fields of missiles, rockets and propulsion systems of launch vehicles with new development of paraffin based solid fuel composition

  • PDF

Hybrid marine propulsion power system with the redox flow batteries of comprehensive aging model

  • Yoo, Seunghyeon;Aguerrevere, Jorge;Jeong, Jinyeong;Jung, Wongwan;Chang, Daejun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.674-690
    • /
    • 2021
  • This study proposes a hybrid marine power system combining dual-fuel generators, a fuel cell, and Vanadium Redox Flow Batteries (VRFB). Rigorous verification and validation of the dynamic modelling and integration of the system are conducted. A case study for the application of the hybrid propulsion system to a passenger ship is conducted to examine its time-variant behaviour. A comprehensive model of the reversible and irreversible capacity degradation of the VRFB stack unit is proposed and validated. The capacity retention of the VRFB stack is simulated by being integrated within the hybrid propulsion system. Reversible degradation of the VRFB stack is precisely predicted and rehabilitated based on the predefined operational schedule, while the irreversible portion is retained until the affected components are replaced. Consequently, the advantages of the VRFB system as an on-board ESS are demonstrated through the application of a hybrid propulsion system for liner shipping with fixed routes.

Comparison and Analysis of Fuel Consumption by CODAD, CODLOD and CODLAD System for Combat Support Ship (군수지원함의 CODAD, CODLOD 및 CODLAD 추진체계에 따른 연료 소비량 비교 및 분석)

  • Kim, Min-wook;Oh, Jin-seok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.5
    • /
    • pp.1049-1059
    • /
    • 2017
  • After patrol corvett Cheonan was hit and sank on duty, the Republic of Korea Navy has tried to install hybrid propulsion system on naval ship to reduce vibration and noise problems during navigation. The hybrid propulsion system has advantage that propulsion motor can be propelled in low speed operation of the vessel. This can be a better quietness than a mechanical propulsion system which consists of a conventional internal combustion engines. And more economical operation is possible by using a propulsion motor in a low speed operation where a fuel efficiency of the internal combustion engine is poor. In this paper, we set up virtual ship on the basis of a combat support ship in the Republic of Korea Navy, economically compared and analyzed fuel consumption between conventional and hybrid propulsion system. As a result, it was confirmed that the fuel efficiency of hybrid propulsion system which use electric motor had been relatively improved.

Development of measurement equipment for hybrid propulsion system of bimodal tram (바이모달 트램의 직렬형 하이브리드 추진시스템 계측장비 개발)

  • Bae, Chang-Han;Chang, Se-Ky;Mok, Jai-Kyun
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.241-248
    • /
    • 2010
  • A bimodal low-floor tram can provide the punctuality of trains and the flexibility of bus together to the passengers. Its propulsion system is a series hybrid type using a set of CNG engine generator and Li-polymer battery. This paper presents a development of the measurement equipment for fine-tuning of a series hybrid propulsion system of bimodal low-floor tram. Its configuration schemes are described and certified using the measurement data of bimodal low-floor tram.

  • PDF