DOI QR코드

DOI QR Code

Hybrid marine propulsion power system with the redox flow batteries of comprehensive aging model

  • Yoo, Seunghyeon (Graduate School of Ocean Systems Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Aguerrevere, Jorge (Process Systems Enterprise Ltd.) ;
  • Jeong, Jinyeong (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Jung, Wongwan (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology) ;
  • Chang, Daejun (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
  • Received : 2021.03.09
  • Accepted : 2021.08.31
  • Published : 2021.11.30

Abstract

This study proposes a hybrid marine power system combining dual-fuel generators, a fuel cell, and Vanadium Redox Flow Batteries (VRFB). Rigorous verification and validation of the dynamic modelling and integration of the system are conducted. A case study for the application of the hybrid propulsion system to a passenger ship is conducted to examine its time-variant behaviour. A comprehensive model of the reversible and irreversible capacity degradation of the VRFB stack unit is proposed and validated. The capacity retention of the VRFB stack is simulated by being integrated within the hybrid propulsion system. Reversible degradation of the VRFB stack is precisely predicted and rehabilitated based on the predefined operational schedule, while the irreversible portion is retained until the affected components are replaced. Consequently, the advantages of the VRFB system as an on-board ESS are demonstrated through the application of a hybrid propulsion system for liner shipping with fixed routes.

Keywords

References

  1. Aaron, D.S., Liu, Q., Tang, Z., Grim, G.M., Papandrew, A.B., Turhan, A., Zawodzinski, T.A., Mench, M.M., 2012. Dramatic performance gains in vanadium redox flow batteries through modified cell architecture. J. Power Sources 206, 450-453. https://doi.org/10.1016/j.jpowsour.2011.12.026.
  2. Al-Fetlawi, H., Shah, A.A., Walsh, F.C., 2010. Modelling the effects of oxygen evolution in the all-vanadium redox flow battery. Electrochim. Acta 55, 3192-3205. https://doi.org/10.1016/j.electacta.2009.12.085.
  3. Alotto, P., Guarnieri, M., Moro, F., 2014. Redox flow batteries for the storage of renewable energy: a review. Renew. Sustain. Energy Rev. 29, 325-335. https://doi.org/10.1016/j.rser.2013.08.001.
  4. American Bureau of Shipping (ABS), 2014. Abs Advisory on Hybrid Electric Power System.
  5. ABB, 2012. Onboard DC Grid - the Step Forward in Power Generation and Propulsion.
  6. Barcellos, R., 2013. The hybrid propulsion system as an alternative for offshore vessels servicing and supporting remote oil field operations. OTC Bras. https://doi.org/10.4043/24467-MS.
  7. Bassam, A.M., Phillips, A.B., Turnock, S.R., Wilson, P.A., 2016. Sizing optimization of a fuel cell/battery hybrid system for a domestic ferry using a whole ship system simulator. In: 2016 Int. Conf. Electr. Syst. Aircraft, Railw. Sh. Propuls. Road Veh. Int. Transp. Electrif. Conf. ESARS-ITEC 2016. https://doi.org/10.1109/ESARSITEC.2016.7841333.
  8. Bassam, A.M., Phillips, A.B., Turnock, S.R., Wilson, P.A., 2017. Development of a multi-scheme energy management strategy for a hybrid fuel cell driven passenger ship. Int. J. Hydrogen Energy 42, 623-635. https://doi.org/10.1016/j.ijhydene.2016.08.209.
  9. Bazari, Z., Moon, D., 2016. IMO Train the Trainer (TTT) Course on Energy Efficient Ship Operation. Module 5 - Ship Port Interface for Energy Efficiency.
  10. Bindner, H.W., Krog Ekman, C., Gehrke, O., Isleifsson, F.R., 2010. Characterization of Vanadium Flow Battery.
  11. Blanc, C., Rufer, A., 2008. Multiphysics and energetic modeling of a vanadium redox flow battery. In: 2008 IEEE Int. Conf. Sustain. Energy Technol. ICSET 2008, Singapore, Singapore, pp. 696-701. https://doi.org/10.1109/ICSET.2008.4747096.
  12. Blanc, C., Rufer, A., 2010. Understanding the Vanadium Redox Flow Batteries. https://doi.org/10.5772/13338.
  13. Bo, T.I., Johansen, T.A., Sorensen, A.J., Mathiesen, E., 2016. Dynamic consequence analysis of marine electric power plant in dynamic positioning. Appl. Ocean Res. 57, 30-39. https://doi.org/10.1016/j.apor.2016.02.004.
  14. T. Buczkowski, J. Noack, P. FischRer, J. Tubke, K. Pinkwart, A vanadium redox flow battery for uninterruptible power supply applications, in: Proc. 6th Int. Conf. Flow Batter. Forum, Glasgow, UK, n.d.: pp. 27-29.
  15. Cao, Y., Li, Y., Zhang, G., Jermsittiparsert, K., Razmjooy, N., 2019. Experimental modeling of PEM fuel cells using a new improved seagull optimization algorithm. Energy Rep. 5, 1616-1625. https://doi.org/10.1016/j.egyr.2019.11.013.
  16. Chang, Choong-koo, 2019. Factors Affecting Capacity Design of Lithium-Ion. MDPI, Basel, Switz.
  17. Chang, C.K., Sulley, M., 2018. Lithium-ion stationary battery capacity sizing formula for the establishment of industrial design standard. J. Electr. Eng. Technol. 13, 2561-2567. https://doi.org/10.5370/JEET.2018.13.6.2561.
  18. Chen, J.-Y., Hsieh, C.-L., Hsu, N.-Y., Chou, Y.-S., Chen, Y.-S., 2014. Determining the limiting current density of vanadium redox flow batteries. Energies 7, 5863-5873. https://doi.org/10.3390/en7095863.
  19. Choi, C.H., Yu, S., Han, I.S., Kho, B.K., Kang, D.G., Lee, H.Y., Seo, M.S., Kong, J.W., Kim, G., Ahn, J.W., Park, S.K., Jang, D.W., Lee, J.H., Kim, M., 2016. Development and demonstration of PEM fuel-cell-battery hybrid system for propulsion of tourist boat. Int. J. Hydrogen Energy 41, 3591-3599. https://doi.org/10.1016/j.ijhydene.2015.12.186.
  20. Correa, J.M., Farret, F.A., Canha, L.N., Simoes, M.G., 2004. An electrochemical-based fuel-cell model suitable for electrical engineering automation approach. IEEE Trans. Ind. Electron. 51, 1103-1112. https://doi.org/10.1109/TIE.2004.834972.
  21. Darling, R.M., Weber, A.Z., Tucker, M.C., Perry, M.L., 2015. The influence of electric field on crossover in redox-flow batteries. J. Electrochem. Soc. 163, A5014-A5022. https://doi.org/10.1149/2.0031601jes.
  22. Derr, I., 2017. Electrochemical Degradation and Chemical Aging of Carbon Felt Electrodes in All-Vanadium Redox Flow Batteries. Freie Universit at Berlin. http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000104831.
  23. Derr, I., Bruns, M., Langner, J., Fetyan, A., Melke, J., Roth, C., 2016. Degradation of all-vanadium redox flow batteries (VRFB) investigated by electrochemical impedance and X-ray photoelectron spectroscopy: Part 2 electrochemical degradation. J. Power Sources 325, 351-359. https://doi.org/10.1016/j.jpowsour.2016.06.040.
  24. DNV, G.L., 2015. RULES for CLASSIFICATION Inland Navigation Vessels Part 5 Ship Types Chapter 6 Tugs and Pushers.
  25. Domaschk, L.N., Ouroua, A., Hebner, R.E., Bowlin, O.E., Colson, W.B., 2007. Coordination of large pulsed loads on future electric ships. IEEE Trans. Magn. 43, 450-455. https://doi.org/10.1109/TMAG.2006.887676.
  26. Fisher, P., Jostins, J., Hilmansen, S., Kendall, K., 2012. Electronic integration of fuel cell and battery system in novel hybrid vehicle. J. Power Sources 220, 114-121. https://doi.org/10.1016/j.jpowsour.2012.07.071.
  27. Gan, L.K., Reniers, J., Howey, D., 2017. A Hybrid Vanadium Redox/Lithium-Ion Energy Storage System for Off-Grid Renewable Power, pp. 1016-1023.
  28. Geertsma, R.D., Negenborn, R.R., Visser, K., Hopman, J.J., 2017. Design and control of hybrid power and propulsion systems for smart ships: a review of developments. Appl. Energy 194, 30-54. https://doi.org/10.1016/j.apenergy.2017.02.060.
  29. Giakoumis, E.G., Alafouzos, A.I., 2010. Study of diesel engine performance and emissions during a Transient Cycle applying an engine mapping-based methodology. Appl. Energy 87, 1358-1365. https://doi.org/10.1016/j.apenergy.2009.09.003.
  30. Hagemeister, C., Otto, H., Kristensen, H., 2011. Environmental Performance Evaluation of RoPax Ferries.
  31. Han, J., Charpentier, J.F., Tang, T., 2014. An energy management system of a fuel cell/battery hybrid boat. Energies 7. https://doi.org/10.3390/en7052799.
  32. International Maritime Organization, 2014. Resolution MEPC.245(66): 2014 guidelines on the method of calculation of the attained energy efficiency design Index (EEDI) for new ships. In: MEPC 66/21, pp. 1-30.
  33. International Maritime Organization, 2016. IMO Train the Trainer (TTT) Course on Energy Efficient Ship Operation - Ship Port Interface for Energy Efficiency.
  34. International Maritime Organization, 2016. Annex 9. Resolution MEPC 281 (70).
  35. Jafari, M., Khan, K., Gauchia, L., 2018. Deterministic models of Li-ion battery aging: it is a matter of scale. J. Energy Storage. 20, 67-77. https://doi.org/10.1016/j.est.2018.09.002.
  36. Jeong, J., Seo, S., You, H., Chang, D., 2018. Comparative analysis of a hybrid propulsion using LNG-LH2complying with regulations on emissions. Int. J. Hydrogen Energy 43, 3809-3821. https://doi.org/10.1016/j.ijhydene.2018.01.041.
  37. Kear, G., Shah, A.A., Walsh, F.C., 2012. Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects. Int. J. Energy Res. 1105-1120. https://doi.org/10.1002/er.
  38. Kim, B., Kim, K., 2017. KR101803825B1 - Redox Flow Battery.
  39. Krcum, M., Gudelj, A., Tomas, V., 2018. Optimal design of ship's hybrid power system for efficient energy. Trans. Marit. Sci. 7, 23-32. https://doi.org/10.7225/toms.v07.n01.002.
  40. Kypuros, J.A., 2009. System Dynamics and Control with Bond Graph Modeling. https://doi.org/10.1007/978-3-8349-8074-8_6.
  41. Lashway, C.R., Elsayed, A.T., Mohammed, O.A., 2016. Hybrid energy storage management in ship power systems with multiple pulsed loads. Elec. Power Syst. Res. 141, 50-62. https://doi.org/10.1016/j.epsr.2016.06.031.
  42. Li, M., Hikihara, T., 2008. A coupled dynamical model of redox flow battery based on chemical reaction, fluid flow and electrical circuit. Inst. Electron. Inf. an Commun. Eng. E91, 1741-1747. https://doi.org/10.1093/ietfec/e91-a.7.1741.
  43. Luo, Q., Li, L., Wang, W., Nie, Z., Wei, X., Li, B., Chen, B., Yang, Z., Sprenkle, V., 2013. Capacity decay and remediation of nafion-based all-vanadium redox flow batteries. ChemSusChem 6, 268-274. https://doi.org/10.1002/cssc.201200730.
  44. Lutha, T., Konig, S., Suriyah, M., Leibfried, T., 2018. Passive components limit the cost reduction of conventionally designed vanadium redox flow batteries. Energy Procedia 155, 379-389. https://doi.org/10.1016/j.egypro.2018.11.040.
  45. MAN, Diesel, Turbo, 2012. Diesel-electric Drives Diesel-Electric Propulsion Plants: a Brief Guideline How to Engineer a Diesel-Electric Propulsion System.
  46. MarineTraffic. M/S Smyril voyage details (n.d.)(accessed June 14, 2018). https://www.marinetraffic.com/en/ais/details/ships/shipid:181927/vessel:SMYRIL.
  47. Martin, I.S., Ursua, A., Sanchis, P., 2014. Modelling of PEM fuel cell performance: steady-state and dynamic experimental validation. Energies 7, 670-700. https://doi.org/10.3390/en7020670.
  48. Menictas, C., Skyllas-Kazacos, M., 2011. Performance of vanadium-oxygen redox fuel cell. J. Appl. Electrochem. 41, 1223-1232. https://doi.org/10.1007/s10800-011-0342-8.
  49. Merei, G., Adler, S., Magnor, D., Leuthold, M., Sauer, D.U., 2014. Multi-physics model for a vanadium redox flow battery. Energy Procedia. The Authors, pp. 194-203. https://doi.org/10.1016/j.egypro.2014.01.173.
  50. Milshtein, J.D., Tenny, K.M., Barton, J.L., Drake, J., Darling, R.M., Brushett, F.R., 2017. Quantifying mass transfer rates in redox flow batteries. J. Electrochem. Soc. 164, E3265-E3275. https://doi.org/10.1149/2.0201711jes.
  51. Minnehan, J.J., Pratt, J.W., 2017. Practical Application Limits of Fuel Cells and Batteries for Zero Emission Vessels.
  52. Moura, S.J., Callaway, D.S., Fathy, H.K., Stein, J.L., 2010. Tradeoffs between battery energy capacity and stochastic optimal power management in plug-in hybrid electric vehicles. J. Power Sources 195, 2979-2988. https://doi.org/10.1016/j.jpowsour.2009.11.026.
  53. Murthy, S.K., Sharma, A.K., Choo, C., Birgersson, E., 2018. Analysis of concentration overpotential in an all-vanadium redox flow battery. J. Electrochem. Soc. 165, A1746-A1752. https://doi.org/10.1149/2.0681809jes.
  54. nano_Flowcell, QUANT, 48VOLT, 2018. http://nanoflowcell.com/what-we-do/prototyping/quant-48volt/. (Accessed 15 May 2018) accessed.
  55. NedStack, NedStack PS6 Product Data, (n.d.).
  56. NedStack. NedStack PS50 product data (n.d.)accessed June 11, 2018). http://www.fuelcellmarkets.com/content/images/articles/ps50.pdf.
  57. Nibel, O., Taylor, S.M., Patru, A., Fabbri, E., Gubler, L., Schmidt, T.J., 2017. Performance of different carbon electrode materials: insights into stability and degradation under real vanadium redox flow battery operating conditions. J. Electrochem. Soc. 164, A1608. https://doi.org/10.1149/2.1081707jes.eA1615.
  58. Ning, G., Haran, B., Popov, B.N., 2003. Capacity fade study of lithium-ion batteries cycled at high discharge rates. J. Power Sources 117, 160-169. https://doi.org/10.1016/S0378-7753(03)00029-6.
  59. Njoya, S.M., Tremblay, O., Dessaint, L.-A., 2009. A generic fuel cell model for the simulation of fuel cell vehicles. In: 2009 IEEE Veh. Power Propuls. Conf., pp. 1722-1729. https://doi.org/10.1109/VPPC.2009.5289692.
  60. Njoya Motapon, S., Dessaint, L.A., Al-Haddad, K., 2014. A comparative study of energy management schemes for a fuel-cell hybrid emergency power system of more-electric aircraft. IEEE Trans. Ind. Electron. 61, 1320-1334. https://doi.org/10.1109/TIE.2013.2257152.
  61. Noack, J.N., Vorhauser, L., Pinkwart, K., Tuebke, J., 2011. Aging studies of vanadium redox flow batteries. ECS Trans. 33, 3-9. https://doi.org/10.1149/1.3589916.
  62. Paganelli, G., Delprat, S., Guerra, T.M., Rimaux, J., Santin, J.J., 2002. Equivalent consumption minimization strategy for parallel hybrid powertrains. IEEE Veh. Technol. Conf. 4, 2076-2081. https://doi.org/10.1109/VTC.2002.1002989.
  63. Pender, J.P., Jha, G., Youn, D.H., Ziegler, J.M., Andoni, I., Choi, E.J., Heller, A., Dunn, B.S., Weiss, P.S., Penner, R.M., Mullins, C.B., 2020. Electrode degradation in lithiumion batteries. ACS Nano 14, 1243-1295. https://doi.org/10.1021/acsnano.9b04365.
  64. Pezeshki, A.M., Sacci, R.L., Veith, G.M., Zawodzinski, T.A., Mench, M.M., 2016. The cell-in-series method: a technique for accelerated electrode degradation in redox flow. Batteries 163, 5202-5210. https://doi.org/10.1149/2.0251601jes.
  65. Port of Oslo, 2012. Facts about the Onshore Power Supply at the Port of Oslo.
  66. Prenc, R., Cuculic, A., Baumgartner, I., 2016. Advantages of using a DC power system on board ship. J. Marit. Transp. Sci. 52, 83-97. https://doi.org/10.18048/2016.52.05
  67. Pugach, M., Kondratenko, M., Briola, S., Bischi, A., 2018. Zero dimensional dynamic model of vanadium redox flow battery cell incorporating all modes of vanadium ions crossover. Appl. Energy 226, 560-569. https://doi.org/10.1016/j.apenergy.2018.05.124.
  68. Saeed, E.W., Warkozek, E.G., 2015. Modeling and analysis of renewable PEM fuel cell system. Energy Procedia 74, 87-101. https://doi.org/10.1016/j.egypro.2015.07.527.
  69. Schweiss, R., Pritzl, A., Meiser, C., 2016. Parasitic hydrogen evolution at different carbon fiber electrodes in vanadium redox flow batteries. J. Electrochem. Soc. 163, A2089. https://doi.org/10.1149/2.1281609jes.-A2094.
  70. Sciberras, E., Grech, A., 2012. Optimization of hybrid propulsion systems. Int. J. Mar. Navig. Saf. Sea Transp. 6, 539-546.
  71. Sdi, S., 2014. Specification of Product INR18650-25R, 0-15. http://www.datasheetpdf.com/datasheet/Samsung/799163/INR18650-20R.pdf.html.
  72. Seyezhai, R., Mathur, B., 2011. Mathematical modeling of proton exchange membrane fuel cells. Int. J. Comput. Appl. 20, 1-6. https://doi.org/10.1149/1.1837667.
  73. Shah, A.A., Watt-Smith, M.J., Walsh, F.C., 2008. A dynamic performance model for redox-flow batteries involving soluble species. Electrochim. Acta 53, 8087-8100. https://doi.org/10.1016/j.electacta.2008.05.067.
  74. Shah, A.A., Al-Fetlawi, H., Walsh, F.C., 2010. Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery. Electrochim. Acta 55, 1125-1139. https://doi.org/10.1016/j.electacta.2009.10.022.
  75. Shah, A.A., Tangirala, R., Singh, R., Wills, R.G.A., Walsh, F.C., 2011. A dynamic unit cell model for the all-vanadium flow battery. J. Electrochem. Soc. 158, A671. https://doi.org/10.1149/1.3561426.
  76. Skyllas-Kazacos, M., Menictas, C., 1997. The vanadium redox battery for emergency back-up applications. Proc. Power Energy Syst. Converging Mark. 463-471. https://doi.org/10.1109/INTLEC.1997.645928.
  77. Skyllas-Kazacos, M., Menictas, C., Lim, T., 2013. 12. Redox flow batteries for medium- to large-scale energy storage. In: Melhem, Z. (Ed.), Electr. Transm. Distrib. Storage Syst. Woodhead Publishing, Cambridge, UK, pp. 398-441. https://doi.org/10.1533/9780857097378.3.398.
  78. Soloveichik, G.L., 2015. Flow batteries: current status and trends. Chem. Rev. 115, 11533-11558. https://doi.org/10.1021/cr500720t.
  79. Southall, M., Butcher, M., 2016. Integration, optimisation and benefits of energy storage for marine applications. 13th Int. Nav. Eng. Conf. Exhib. 1-13.
  80. Sun, C., Chen, J., Zhang, H., Han, X., Luo, Q., 2010. Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery. J. Power Sources 195, 890-897. https://doi.org/10.1016/j.jpowsour.2009.08.041.
  81. Tang, A., Bao, J., Skyllas-Kazacos, M., 2011. Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery. J. Power Sources 196, 10737-10747. https://doi.org/10.1016/j.jpowsour.2011.09.003.
  82. Tolj, I., Lototskyy, M.V., Davids, M.W., Pasupathi, S., Swart, G., Pollet, B.G., 2013. Fuel cell-battery hybrid powered light electric vehicle (golf cart): influence of fuel cell on the driving performance. Int. J. Hydrogen Energy 38, 10630-10639. https://doi.org/10.1016/j.ijhydene.2013.06.072.
  83. Tronstad, T., Astrand, H.H., Haugom, G.P., Langfeldt, L., 2017. Study on the Use of Fuel Cells in Shipping.
  84. Tudorache, T., Roman, C., 2010. The numerical modeling of transient regimes of diesel generator sets. Acta Polytech. Hungarica. 7, 39-53.
  85. van Biert, L., Godjevac, M., Visser, K., Aravind, P.V., 2016. A review of fuel cell systems for maritime applications. J. Power Sources 327, 345-364. https://doi.org/10.1016/j.jpowsour.2016.07.007.
  86. Veziroglu, A., MacArio, R., 2011. Fuel cell vehicles: state of the art with economic and environmental concerns. Int. J. Hydrogen Energy 36, 25-43. https://doi.org/10.1016/j.ijhydene.2010.08.145.
  87. Volker, T., 2013. Hybrid Propulsion Concepts on Ships Harbor Tug Description of Harbor Tug Load Profiles for Harbor Tug. Sci. J. Gdynia Marit. Univ., pp. 66-76
  88. Watanabe, S., Kinoshita, M., Hosokawa, T., Morigaki, K., Nakura, K., 2014. Capacity fade of LiAlyNi1-x-yCoxO 2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1-x-yCo xO2 cathode after cycle tests in restricted depth of discharge ranges). J. Power Sources 258, 210-217. https://doi.org/10.1016/j.jpowsour.2014.02.018.
  89. Weber, A.Z., Mench, M.M., Meyers, J.P., Ross, P.N., Gostick, J.T., Liu, Q., 2011. Redox flow batteries: a review. J. Appl. Electrochem. 41, 1137-1164. https://doi.org/10.1007/s10800-011-0348-2.
  90. Xi, J., Xiao, S., Yu, L., Wu, L., Liu, L., Qiu, X., 2016. Broad temperature adaptability of vanadium redox flow battery - Part 2: cell research. Electrochim. Acta 191, 695-704. https://doi.org/10.1016/j.electacta.2016.01.165.
  91. You, X., Ye, Q., Cheng, P., 2017. The dependence of mass transfer coefficient on the electrolyte velocity in carbon felt electrodes: determination and validation. J. Electrochem. Soc. 164, E3386-E3394. https://doi.org/10.1149/2.0401711jes.
  92. Zahedi, B., Norum, L.E., Ludvigsen, K.B., 2014. Optimized efficiency of all-electric ships by dc hybrid power systems. J. Power Sources 255, 341-354. https://doi.org/10.1016/j.jpowsour.2014.01.031.
  93. Zhang, X., Mi, C.C., Masrur, A., Daniszewski, D., 2008. Wavelet-transform-based power management of hybrid vehicles with multiple on-board energy sources including fuel cell, battery and ultracapacitor. J. Power Sources 185, 1533-1543. https://doi.org/10.1016/j.jpowsour.2008.08.046.
  94. Zhang, J., Li, L., Nie, Z., Chen, B., Vijayakumar, M., Kim, S., Wang, W., Schwenzer, B., Liu, J., Yang, Z., 2011. Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries. J. Appl. Electrochem. 41, 1215-1221. https://doi.org/10.1007/s10800-011-0312-1.
  95. Zhang, X., Li, Y., Skyllas-kazacos, M., Bao, J., 2016. Optimal Sizing of Vanadium Redox Flow Battery Systems for Residential Applications Based on Battery Electrochemical Characteristics. Energies. https://doi.org/10.3390/en9100857.