Browse > Article
http://dx.doi.org/10.1016/j.ijnaoe.2021.08.006

Hybrid marine propulsion power system with the redox flow batteries of comprehensive aging model  

Yoo, Seunghyeon (Graduate School of Ocean Systems Engineering, Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
Aguerrevere, Jorge (Process Systems Enterprise Ltd.)
Jeong, Jinyeong (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
Jung, Wongwan (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
Chang, Daejun (Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology)
Publication Information
International Journal of Naval Architecture and Ocean Engineering / v.13, no.1, 2021 , pp. 674-690 More about this Journal
Abstract
This study proposes a hybrid marine power system combining dual-fuel generators, a fuel cell, and Vanadium Redox Flow Batteries (VRFB). Rigorous verification and validation of the dynamic modelling and integration of the system are conducted. A case study for the application of the hybrid propulsion system to a passenger ship is conducted to examine its time-variant behaviour. A comprehensive model of the reversible and irreversible capacity degradation of the VRFB stack unit is proposed and validated. The capacity retention of the VRFB stack is simulated by being integrated within the hybrid propulsion system. Reversible degradation of the VRFB stack is precisely predicted and rehabilitated based on the predefined operational schedule, while the irreversible portion is retained until the affected components are replaced. Consequently, the advantages of the VRFB system as an on-board ESS are demonstrated through the application of a hybrid propulsion system for liner shipping with fixed routes.
Keywords
Hybrid power system; Vanadium redox flow battery; Degradation; Fuel cell; EEDI;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Port of Oslo, 2012. Facts about the Onshore Power Supply at the Port of Oslo.
2 Saeed, E.W., Warkozek, E.G., 2015. Modeling and analysis of renewable PEM fuel cell system. Energy Procedia 74, 87-101. https://doi.org/10.1016/j.egypro.2015.07.527.   DOI
3 Schweiss, R., Pritzl, A., Meiser, C., 2016. Parasitic hydrogen evolution at different carbon fiber electrodes in vanadium redox flow batteries. J. Electrochem. Soc. 163, A2089. https://doi.org/10.1149/2.1281609jes.-A2094.   DOI
4 Sdi, S., 2014. Specification of Product INR18650-25R, 0-15. http://www.datasheetpdf.com/datasheet/Samsung/799163/INR18650-20R.pdf.html.
5 Giakoumis, E.G., Alafouzos, A.I., 2010. Study of diesel engine performance and emissions during a Transient Cycle applying an engine mapping-based methodology. Appl. Energy 87, 1358-1365. https://doi.org/10.1016/j.apenergy.2009.09.003.   DOI
6 Pender, J.P., Jha, G., Youn, D.H., Ziegler, J.M., Andoni, I., Choi, E.J., Heller, A., Dunn, B.S., Weiss, P.S., Penner, R.M., Mullins, C.B., 2020. Electrode degradation in lithiumion batteries. ACS Nano 14, 1243-1295. https://doi.org/10.1021/acsnano.9b04365.   DOI
7 Bazari, Z., Moon, D., 2016. IMO Train the Trainer (TTT) Course on Energy Efficient Ship Operation. Module 5 - Ship Port Interface for Energy Efficiency.
8 Merei, G., Adler, S., Magnor, D., Leuthold, M., Sauer, D.U., 2014. Multi-physics model for a vanadium redox flow battery. Energy Procedia. The Authors, pp. 194-203. https://doi.org/10.1016/j.egypro.2014.01.173.   DOI
9 Moura, S.J., Callaway, D.S., Fathy, H.K., Stein, J.L., 2010. Tradeoffs between battery energy capacity and stochastic optimal power management in plug-in hybrid electric vehicles. J. Power Sources 195, 2979-2988. https://doi.org/10.1016/j.jpowsour.2009.11.026.   DOI
10 Bassam, A.M., Phillips, A.B., Turnock, S.R., Wilson, P.A., 2017. Development of a multi-scheme energy management strategy for a hybrid fuel cell driven passenger ship. Int. J. Hydrogen Energy 42, 623-635. https://doi.org/10.1016/j.ijhydene.2016.08.209.   DOI
11 Bindner, H.W., Krog Ekman, C., Gehrke, O., Isleifsson, F.R., 2010. Characterization of Vanadium Flow Battery.
12 Blanc, C., Rufer, A., 2008. Multiphysics and energetic modeling of a vanadium redox flow battery. In: 2008 IEEE Int. Conf. Sustain. Energy Technol. ICSET 2008, Singapore, Singapore, pp. 696-701. https://doi.org/10.1109/ICSET.2008.4747096.   DOI
13 American Bureau of Shipping (ABS), 2014. Abs Advisory on Hybrid Electric Power System.
14 Correa, J.M., Farret, F.A., Canha, L.N., Simoes, M.G., 2004. An electrochemical-based fuel-cell model suitable for electrical engineering automation approach. IEEE Trans. Ind. Electron. 51, 1103-1112. https://doi.org/10.1109/TIE.2004.834972.   DOI
15 Darling, R.M., Weber, A.Z., Tucker, M.C., Perry, M.L., 2015. The influence of electric field on crossover in redox-flow batteries. J. Electrochem. Soc. 163, A5014-A5022. https://doi.org/10.1149/2.0031601jes.   DOI
16 Njoya Motapon, S., Dessaint, L.A., Al-Haddad, K., 2014. A comparative study of energy management schemes for a fuel-cell hybrid emergency power system of more-electric aircraft. IEEE Trans. Ind. Electron. 61, 1320-1334. https://doi.org/10.1109/TIE.2013.2257152.   DOI
17 Noack, J.N., Vorhauser, L., Pinkwart, K., Tuebke, J., 2011. Aging studies of vanadium redox flow batteries. ECS Trans. 33, 3-9. https://doi.org/10.1149/1.3589916.   DOI
18 Krcum, M., Gudelj, A., Tomas, V., 2018. Optimal design of ship's hybrid power system for efficient energy. Trans. Marit. Sci. 7, 23-32. https://doi.org/10.7225/toms.v07.n01.002.   DOI
19 Prenc, R., Cuculic, A., Baumgartner, I., 2016. Advantages of using a DC power system on board ship. J. Marit. Transp. Sci. 52, 83-97.   DOI
20 International Maritime Organization, 2016. IMO Train the Trainer (TTT) Course on Energy Efficient Ship Operation - Ship Port Interface for Energy Efficiency.
21 ABB, 2012. Onboard DC Grid - the Step Forward in Power Generation and Propulsion.
22 Barcellos, R., 2013. The hybrid propulsion system as an alternative for offshore vessels servicing and supporting remote oil field operations. OTC Bras. https://doi.org/10.4043/24467-MS.
23 Bassam, A.M., Phillips, A.B., Turnock, S.R., Wilson, P.A., 2016. Sizing optimization of a fuel cell/battery hybrid system for a domestic ferry using a whole ship system simulator. In: 2016 Int. Conf. Electr. Syst. Aircraft, Railw. Sh. Propuls. Road Veh. Int. Transp. Electrif. Conf. ESARS-ITEC 2016. https://doi.org/10.1109/ESARSITEC.2016.7841333.   DOI
24 Sciberras, E., Grech, A., 2012. Optimization of hybrid propulsion systems. Int. J. Mar. Navig. Saf. Sea Transp. 6, 539-546.
25 NedStack, NedStack PS6 Product Data, (n.d.).
26 Ning, G., Haran, B., Popov, B.N., 2003. Capacity fade study of lithium-ion batteries cycled at high discharge rates. J. Power Sources 117, 160-169. https://doi.org/10.1016/S0378-7753(03)00029-6.   DOI
27 Pugach, M., Kondratenko, M., Briola, S., Bischi, A., 2018. Zero dimensional dynamic model of vanadium redox flow battery cell incorporating all modes of vanadium ions crossover. Appl. Energy 226, 560-569. https://doi.org/10.1016/j.apenergy.2018.05.124.   DOI
28 Alotto, P., Guarnieri, M., Moro, F., 2014. Redox flow batteries for the storage of renewable energy: a review. Renew. Sustain. Energy Rev. 29, 325-335. https://doi.org/10.1016/j.rser.2013.08.001.   DOI
29 Aaron, D.S., Liu, Q., Tang, Z., Grim, G.M., Papandrew, A.B., Turhan, A., Zawodzinski, T.A., Mench, M.M., 2012. Dramatic performance gains in vanadium redox flow batteries through modified cell architecture. J. Power Sources 206, 450-453. https://doi.org/10.1016/j.jpowsour.2011.12.026.   DOI
30 International Maritime Organization, 2016. Annex 9. Resolution MEPC 281 (70).
31 Shah, A.A., Watt-Smith, M.J., Walsh, F.C., 2008. A dynamic performance model for redox-flow batteries involving soluble species. Electrochim. Acta 53, 8087-8100. https://doi.org/10.1016/j.electacta.2008.05.067.   DOI
32 Skyllas-Kazacos, M., Menictas, C., 1997. The vanadium redox battery for emergency back-up applications. Proc. Power Energy Syst. Converging Mark. 463-471. https://doi.org/10.1109/INTLEC.1997.645928.   DOI
33 Southall, M., Butcher, M., 2016. Integration, optimisation and benefits of energy storage for marine applications. 13th Int. Nav. Eng. Conf. Exhib. 1-13.
34 Tolj, I., Lototskyy, M.V., Davids, M.W., Pasupathi, S., Swart, G., Pollet, B.G., 2013. Fuel cell-battery hybrid powered light electric vehicle (golf cart): influence of fuel cell on the driving performance. Int. J. Hydrogen Energy 38, 10630-10639. https://doi.org/10.1016/j.ijhydene.2013.06.072.   DOI
35 van Biert, L., Godjevac, M., Visser, K., Aravind, P.V., 2016. A review of fuel cell systems for maritime applications. J. Power Sources 327, 345-364. https://doi.org/10.1016/j.jpowsour.2016.07.007.   DOI
36 You, X., Ye, Q., Cheng, P., 2017. The dependence of mass transfer coefficient on the electrolyte velocity in carbon felt electrodes: determination and validation. J. Electrochem. Soc. 164, E3386-E3394. https://doi.org/10.1149/2.0401711jes.   DOI
37 Zhang, J., Li, L., Nie, Z., Chen, B., Vijayakumar, M., Kim, S., Wang, W., Schwenzer, B., Liu, J., Yang, Z., 2011. Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries. J. Appl. Electrochem. 41, 1215-1221. https://doi.org/10.1007/s10800-011-0312-1.   DOI
38 Bo, T.I., Johansen, T.A., Sorensen, A.J., Mathiesen, E., 2016. Dynamic consequence analysis of marine electric power plant in dynamic positioning. Appl. Ocean Res. 57, 30-39. https://doi.org/10.1016/j.apor.2016.02.004.   DOI
39 Blanc, C., Rufer, A., 2010. Understanding the Vanadium Redox Flow Batteries. https://doi.org/10.5772/13338.
40 Paganelli, G., Delprat, S., Guerra, T.M., Rimaux, J., Santin, J.J., 2002. Equivalent consumption minimization strategy for parallel hybrid powertrains. IEEE Veh. Technol. Conf. 4, 2076-2081. https://doi.org/10.1109/VTC.2002.1002989.   DOI
41 T. Buczkowski, J. Noack, P. FischRer, J. Tubke, K. Pinkwart, A vanadium redox flow battery for uninterruptible power supply applications, in: Proc. 6th Int. Conf. Flow Batter. Forum, Glasgow, UK, n.d.: pp. 27-29.
42 Cao, Y., Li, Y., Zhang, G., Jermsittiparsert, K., Razmjooy, N., 2019. Experimental modeling of PEM fuel cells using a new improved seagull optimization algorithm. Energy Rep. 5, 1616-1625. https://doi.org/10.1016/j.egyr.2019.11.013.   DOI
43 Chang, C.K., Sulley, M., 2018. Lithium-ion stationary battery capacity sizing formula for the establishment of industrial design standard. J. Electr. Eng. Technol. 13, 2561-2567. https://doi.org/10.5370/JEET.2018.13.6.2561.   DOI
44 Chen, J.-Y., Hsieh, C.-L., Hsu, N.-Y., Chou, Y.-S., Chen, Y.-S., 2014. Determining the limiting current density of vanadium redox flow batteries. Energies 7, 5863-5873. https://doi.org/10.3390/en7095863.   DOI
45 Choi, C.H., Yu, S., Han, I.S., Kho, B.K., Kang, D.G., Lee, H.Y., Seo, M.S., Kong, J.W., Kim, G., Ahn, J.W., Park, S.K., Jang, D.W., Lee, J.H., Kim, M., 2016. Development and demonstration of PEM fuel-cell-battery hybrid system for propulsion of tourist boat. Int. J. Hydrogen Energy 41, 3591-3599. https://doi.org/10.1016/j.ijhydene.2015.12.186.   DOI
46 Al-Fetlawi, H., Shah, A.A., Walsh, F.C., 2010. Modelling the effects of oxygen evolution in the all-vanadium redox flow battery. Electrochim. Acta 55, 3192-3205. https://doi.org/10.1016/j.electacta.2009.12.085.   DOI
47 Jafari, M., Khan, K., Gauchia, L., 2018. Deterministic models of Li-ion battery aging: it is a matter of scale. J. Energy Storage. 20, 67-77. https://doi.org/10.1016/j.est.2018.09.002.   DOI
48 Jeong, J., Seo, S., You, H., Chang, D., 2018. Comparative analysis of a hybrid propulsion using LNG-LH2complying with regulations on emissions. Int. J. Hydrogen Energy 43, 3809-3821. https://doi.org/10.1016/j.ijhydene.2018.01.041.   DOI
49 Kear, G., Shah, A.A., Walsh, F.C., 2012. Development of the all-vanadium redox flow battery for energy storage: a review of technological, financial and policy aspects. Int. J. Energy Res. 1105-1120. https://doi.org/10.1002/er.
50 Kim, B., Kim, K., 2017. KR101803825B1 - Redox Flow Battery.
51 Lutha, T., Konig, S., Suriyah, M., Leibfried, T., 2018. Passive components limit the cost reduction of conventionally designed vanadium redox flow batteries. Energy Procedia 155, 379-389. https://doi.org/10.1016/j.egypro.2018.11.040.   DOI
52 Kypuros, J.A., 2009. System Dynamics and Control with Bond Graph Modeling. https://doi.org/10.1007/978-3-8349-8074-8_6.
53 Lashway, C.R., Elsayed, A.T., Mohammed, O.A., 2016. Hybrid energy storage management in ship power systems with multiple pulsed loads. Elec. Power Syst. Res. 141, 50-62. https://doi.org/10.1016/j.epsr.2016.06.031.   DOI
54 Li, M., Hikihara, T., 2008. A coupled dynamical model of redox flow battery based on chemical reaction, fluid flow and electrical circuit. Inst. Electron. Inf. an Commun. Eng. E91, 1741-1747. https://doi.org/10.1093/ietfec/e91-a.7.1741.   DOI
55 Luo, Q., Li, L., Wang, W., Nie, Z., Wei, X., Li, B., Chen, B., Yang, Z., Sprenkle, V., 2013. Capacity decay and remediation of nafion-based all-vanadium redox flow batteries. ChemSusChem 6, 268-274. https://doi.org/10.1002/cssc.201200730.   DOI
56 Derr, I., 2017. Electrochemical Degradation and Chemical Aging of Carbon Felt Electrodes in All-Vanadium Redox Flow Batteries. Freie Universit at Berlin. http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000104831.
57 MAN, Diesel, Turbo, 2012. Diesel-electric Drives Diesel-Electric Propulsion Plants: a Brief Guideline How to Engineer a Diesel-Electric Propulsion System.
58 DNV, G.L., 2015. RULES for CLASSIFICATION Inland Navigation Vessels Part 5 Ship Types Chapter 6 Tugs and Pushers.
59 Domaschk, L.N., Ouroua, A., Hebner, R.E., Bowlin, O.E., Colson, W.B., 2007. Coordination of large pulsed loads on future electric ships. IEEE Trans. Magn. 43, 450-455. https://doi.org/10.1109/TMAG.2006.887676.   DOI
60 Fisher, P., Jostins, J., Hilmansen, S., Kendall, K., 2012. Electronic integration of fuel cell and battery system in novel hybrid vehicle. J. Power Sources 220, 114-121. https://doi.org/10.1016/j.jpowsour.2012.07.071.   DOI
61 Zhang, X., Li, Y., Skyllas-kazacos, M., Bao, J., 2016. Optimal Sizing of Vanadium Redox Flow Battery Systems for Residential Applications Based on Battery Electrochemical Characteristics. Energies. https://doi.org/10.3390/en9100857.   DOI
62 Watanabe, S., Kinoshita, M., Hosokawa, T., Morigaki, K., Nakura, K., 2014. Capacity fade of LiAlyNi1-x-yCoxO 2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1-x-yCo xO2 cathode after cycle tests in restricted depth of discharge ranges). J. Power Sources 258, 210-217. https://doi.org/10.1016/j.jpowsour.2014.02.018.   DOI
63 Chang, Choong-koo, 2019. Factors Affecting Capacity Design of Lithium-Ion. MDPI, Basel, Switz.
64 Seyezhai, R., Mathur, B., 2011. Mathematical modeling of proton exchange membrane fuel cells. Int. J. Comput. Appl. 20, 1-6. https://doi.org/10.1149/1.1837667.   DOI
65 Shah, A.A., Tangirala, R., Singh, R., Wills, R.G.A., Walsh, F.C., 2011. A dynamic unit cell model for the all-vanadium flow battery. J. Electrochem. Soc. 158, A671. https://doi.org/10.1149/1.3561426.   DOI
66 Xi, J., Xiao, S., Yu, L., Wu, L., Liu, L., Qiu, X., 2016. Broad temperature adaptability of vanadium redox flow battery - Part 2: cell research. Electrochim. Acta 191, 695-704. https://doi.org/10.1016/j.electacta.2016.01.165.   DOI
67 Zahedi, B., Norum, L.E., Ludvigsen, K.B., 2014. Optimized efficiency of all-electric ships by dc hybrid power systems. J. Power Sources 255, 341-354. https://doi.org/10.1016/j.jpowsour.2014.01.031.   DOI
68 Zhang, X., Mi, C.C., Masrur, A., Daniszewski, D., 2008. Wavelet-transform-based power management of hybrid vehicles with multiple on-board energy sources including fuel cell, battery and ultracapacitor. J. Power Sources 185, 1533-1543. https://doi.org/10.1016/j.jpowsour.2008.08.046.   DOI
69 Soloveichik, G.L., 2015. Flow batteries: current status and trends. Chem. Rev. 115, 11533-11558. https://doi.org/10.1021/cr500720t.   DOI
70 Skyllas-Kazacos, M., Menictas, C., Lim, T., 2013. 12. Redox flow batteries for medium- to large-scale energy storage. In: Melhem, Z. (Ed.), Electr. Transm. Distrib. Storage Syst. Woodhead Publishing, Cambridge, UK, pp. 398-441. https://doi.org/10.1533/9780857097378.3.398.
71 Tronstad, T., Astrand, H.H., Haugom, G.P., Langfeldt, L., 2017. Study on the Use of Fuel Cells in Shipping.
72 Derr, I., Bruns, M., Langner, J., Fetyan, A., Melke, J., Roth, C., 2016. Degradation of all-vanadium redox flow batteries (VRFB) investigated by electrochemical impedance and X-ray photoelectron spectroscopy: Part 2 electrochemical degradation. J. Power Sources 325, 351-359. https://doi.org/10.1016/j.jpowsour.2016.06.040.   DOI
73 Geertsma, R.D., Negenborn, R.R., Visser, K., Hopman, J.J., 2017. Design and control of hybrid power and propulsion systems for smart ships: a review of developments. Appl. Energy 194, 30-54. https://doi.org/10.1016/j.apenergy.2017.02.060.   DOI
74 Hagemeister, C., Otto, H., Kristensen, H., 2011. Environmental Performance Evaluation of RoPax Ferries.
75 Tudorache, T., Roman, C., 2010. The numerical modeling of transient regimes of diesel generator sets. Acta Polytech. Hungarica. 7, 39-53.
76 International Maritime Organization, 2014. Resolution MEPC.245(66): 2014 guidelines on the method of calculation of the attained energy efficiency design Index (EEDI) for new ships. In: MEPC 66/21, pp. 1-30.
77 Martin, I.S., Ursua, A., Sanchis, P., 2014. Modelling of PEM fuel cell performance: steady-state and dynamic experimental validation. Energies 7, 670-700. https://doi.org/10.3390/en7020670.   DOI
78 Menictas, C., Skyllas-Kazacos, M., 2011. Performance of vanadium-oxygen redox fuel cell. J. Appl. Electrochem. 41, 1223-1232. https://doi.org/10.1007/s10800-011-0342-8.   DOI
79 Sun, C., Chen, J., Zhang, H., Han, X., Luo, Q., 2010. Investigations on transfer of water and vanadium ions across Nafion membrane in an operating vanadium redox flow battery. J. Power Sources 195, 890-897. https://doi.org/10.1016/j.jpowsour.2009.08.041.   DOI
80 Tang, A., Bao, J., Skyllas-Kazacos, M., 2011. Dynamic modelling of the effects of ion diffusion and side reactions on the capacity loss for vanadium redox flow battery. J. Power Sources 196, 10737-10747. https://doi.org/10.1016/j.jpowsour.2011.09.003.   DOI
81 Veziroglu, A., MacArio, R., 2011. Fuel cell vehicles: state of the art with economic and environmental concerns. Int. J. Hydrogen Energy 36, 25-43. https://doi.org/10.1016/j.ijhydene.2010.08.145.   DOI
82 Volker, T., 2013. Hybrid Propulsion Concepts on Ships Harbor Tug Description of Harbor Tug Load Profiles for Harbor Tug. Sci. J. Gdynia Marit. Univ., pp. 66-76
83 nano_Flowcell, QUANT, 48VOLT, 2018. http://nanoflowcell.com/what-we-do/prototyping/quant-48volt/. (Accessed 15 May 2018) accessed.
84 Han, J., Charpentier, J.F., Tang, T., 2014. An energy management system of a fuel cell/battery hybrid boat. Energies 7. https://doi.org/10.3390/en7052799.   DOI
85 MarineTraffic. M/S Smyril voyage details (n.d.)(accessed June 14, 2018). https://www.marinetraffic.com/en/ais/details/ships/shipid:181927/vessel:SMYRIL.
86 Milshtein, J.D., Tenny, K.M., Barton, J.L., Drake, J., Darling, R.M., Brushett, F.R., 2017. Quantifying mass transfer rates in redox flow batteries. J. Electrochem. Soc. 164, E3265-E3275. https://doi.org/10.1149/2.0201711jes.   DOI
87 Minnehan, J.J., Pratt, J.W., 2017. Practical Application Limits of Fuel Cells and Batteries for Zero Emission Vessels.
88 Murthy, S.K., Sharma, A.K., Choo, C., Birgersson, E., 2018. Analysis of concentration overpotential in an all-vanadium redox flow battery. J. Electrochem. Soc. 165, A1746-A1752. https://doi.org/10.1149/2.0681809jes.   DOI
89 NedStack. NedStack PS50 product data (n.d.)accessed June 11, 2018). http://www.fuelcellmarkets.com/content/images/articles/ps50.pdf.
90 Nibel, O., Taylor, S.M., Patru, A., Fabbri, E., Gubler, L., Schmidt, T.J., 2017. Performance of different carbon electrode materials: insights into stability and degradation under real vanadium redox flow battery operating conditions. J. Electrochem. Soc. 164, A1608. https://doi.org/10.1149/2.1081707jes.eA1615.   DOI
91 Njoya, S.M., Tremblay, O., Dessaint, L.-A., 2009. A generic fuel cell model for the simulation of fuel cell vehicles. In: 2009 IEEE Veh. Power Propuls. Conf., pp. 1722-1729. https://doi.org/10.1109/VPPC.2009.5289692.   DOI
92 Shah, A.A., Al-Fetlawi, H., Walsh, F.C., 2010. Dynamic modelling of hydrogen evolution effects in the all-vanadium redox flow battery. Electrochim. Acta 55, 1125-1139. https://doi.org/10.1016/j.electacta.2009.10.022.   DOI
93 Weber, A.Z., Mench, M.M., Meyers, J.P., Ross, P.N., Gostick, J.T., Liu, Q., 2011. Redox flow batteries: a review. J. Appl. Electrochem. 41, 1137-1164. https://doi.org/10.1007/s10800-011-0348-2.   DOI
94 Gan, L.K., Reniers, J., Howey, D., 2017. A Hybrid Vanadium Redox/Lithium-Ion Energy Storage System for Off-Grid Renewable Power, pp. 1016-1023.
95 Pezeshki, A.M., Sacci, R.L., Veith, G.M., Zawodzinski, T.A., Mench, M.M., 2016. The cell-in-series method: a technique for accelerated electrode degradation in redox flow. Batteries 163, 5202-5210. https://doi.org/10.1149/2.0251601jes.   DOI