• Title/Summary/Keyword: Hybrid Electric Vehicles

Search Result 278, Processing Time 0.028 seconds

Analysis of the FuelCell Battery Hybrid Power System (연료전지 축전지 복합 동력원의 구동 특성)

  • Lee, Bong-Do;Shin, Dong-Ryul
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.1322-1324
    • /
    • 2001
  • FuelCell/Battery hybrid power systems were studied to develop high efficient zero-emission fuel cell electric vehicles. Fuel cells were used as an auxiliary energy source and batteries were used as a transient power source. The fuel cell system is used to supply the average power demand. Dynamic response of the hybrid systems was simulated using PSPICE program and also tested experimentally. The results can be used to design the interface module and to determine the power requirement between the fuel cell unit and the battery pack.

  • PDF

Load Analysis of the FuelCell/Battery Hybrid Power System (연료전지 축전지 하이브리드 동력원의 접속 특성 분석)

  • Lee, Bong-Do;Lee, Won-Yong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3081-3083
    • /
    • 2000
  • Fuel cell/battery hybrid power systems were studied to develop high efficient zero-emission fuel cell electric vehicles, Fuel cells were used as an auxiliary energy source and batteries were used as a transient power source. The fuel cell system is used to supply the average power demand. Dynamic response of the hybrid systems was simulated using PSPICE program and also tested experimentally, The results can be used to design the interface module and to determine the power requirement between the fuel cell unit and the battery pack.

  • PDF

Study of the Vibration and Shock Isolation for HEV Battery Pack (특수임무 차량 배터리 팩 진동/충격 저감 설계에 대한 연구)

  • Kim, Man-Dal;Jang, Duk-Jin;Lee, Sung-Jun;Hong, Seong-Wook
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.10
    • /
    • pp.813-820
    • /
    • 2016
  • Hybrid Electric Vehicles (HEVs) are developed to be operated with two kinds of power source (Diesel Engine and Electric Motor with Rechargeable High Voltage Battery Pack). HEVs for military vehicle require high reliability to provide stable powers under serious environment such as vibration and shock. To ensure normal operation of battery pack under serious environment such as vibration and shock, the high voltage battery pack needs to have appropriate dynamic characteristics. This paper presents a design procedure for high voltage battery pack with such characteristics. An isolator design is proposed to reduce vibration and shock. Associated random vibration and shock response of the high voltage battery pack are simulated under conditions suggested by MIL specifications. Its dynamic characteristics and vibration and shock responses are validated with experiments.

Development of A Simulation Environment for An Efficient Combined Control Methodology of Fuel Cell Hybrid Electric Vehicles (연료전지 자동차 시스템의 효율적인 연계운전방법 개발을 위한 시뮬레이션 환경 구축)

  • Lee, Nam-Su;Shim, Seong-Yong;Ahn, Hyun-Sik;Kim, Do-Hyun;Seong, Yeong-Rak;Oh, Ha-Ryoung
    • Proceedings of the KIEE Conference
    • /
    • 2004.07d
    • /
    • pp.2367-2369
    • /
    • 2004
  • It is well known that an indirect methanol based fuel cell system imposes a performance limitation on the fuel cell electric vehicle (FCEV) due to the reformer lag. An optional battery system can be used together with fuel cell to improve this performance limitation and it is called a fuel cell hybrid electric vehicle (FCHEV) this paper first describes the configuration of FCHEV with explanation of the energy flow between subsystems. Mathematical modeling of each subsystem such as a fuel cell system, a battery system, a driving motor with the transmission are formulated and coded using Matlab/simulink software. It is illustrated by simulation results that fuel cell modeling yields appropriate stack voltage in order to get the required current quantity with varying hydrogen flow.

  • PDF

A Study on SOC Algorithm and Design of Battery ECU for Hybrid Electric Vehicle (하이브리드 전기자동차용 배터리 ECU 설계 및 잔존용량 알고리즘에 관한 연구)

  • 남종하;최진홍;김승종;황호석;김재웅
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.319-325
    • /
    • 2004
  • The major factors that make ZEV affordable are the range and cost. The development of advanced batteries such as Ni-MH battery can solve the problem partly; on the hand the battery management system is an efficient way. Ni-MH battery and battery ECU is a key component influencing ZEV performance, such as range, acceleration and hill-climbing capability. Because most problems related to battery such as short circuit, over-discharge and overcharge occur easily during operation, it is necessary to develop a dedicated battery ECU for HEV. This paper proposes a new SOC algorithm for the HEV based on the terminal voltage and current integration. And battery ECU was designed and analyzed. Also, the validity is confirmed through experiment.

The Simulation of Hybrid Electric Vehicle - ADVISOR(Advanced Vehicle Simulator) (하이브리드 전기자동차 시뮬레이션 - ADVISOR)

  • Nam Jong-Ha;Choi Jin-Hong;Baek Jong-Yeop;Jang Dae-Kyoung;Hwang Ho-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2006.06a
    • /
    • pp.225-227
    • /
    • 2006
  • The U.S. Department of Energy's National Renewable Energy Laboratory (NREL) first developed ADVISOR in 1994. Between 1998 and 2003 it was downloaded by more than 7,000 individuals, corporations, and universities world-wide. In early 2003 NREL initiated the commercialisation of ADVISOR through a public solicitation. AVL responded and was awarded the exclusive rights to license and distribute ADVISOR world-wide. AVL is committed to continuously enhance ADVISOR's capabilities. Provides rapid analysis of the performance and fuel economy of conventional and advanced, light and heavy-duty vehicle models as well as hybrid electric and fuel cell vehicle models. ADVISOR Simulates the Following Vehicle Characteristics. - Optimal drivetrain component sizes that provide the best fuel economy Vehicle's ablility to follow the speed trace - Amount of fuel and/or electric energy required by various vehicle concepts - Peak power and efficiency achieved by the drivetrain components - Torque and speed distribution of the engine - Average efficiency of the transmission - Gradeability of vehicles at various velocities

  • PDF

Design and Performance Evaluation for a Fuel Cell/Battery Hybrid Mini-Bus Based on a Simulation (시뮬레이션 기반 연료전지/2차전지 하이브리드 미니버스의 설계 및 성능 평가)

  • Kim, Min-Jin;Kong, Nak-Won;Lee, Won-Yong;Kim, Chang-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.18 no.1
    • /
    • pp.60-66
    • /
    • 2007
  • In terms of the vehicle efficiency, a fuel cell hybrid system has advantages compared to a conventional internal combustion engine and a fuel cell alone-powered system. The efficiency of the fuel cell hybrid vehicle mainly depends on the maximum power of the fuel cell and therefore it is important to decide the design value of the fuel cell maximum power. In this paper, to estimate the performance of the fuel cell hybrid mini-bus in the design phase the simulator based on the models for the fuel cell stack, the electric battery, the fuel cell balance of plant, the controller, and the vehicle itself is proposed. Additionally, the hybrid mini-bus efficiencies with several different fuel cell powers are simulated for a city driving schedule and are compared on another. Consequently, the proposed simulation scheme is useful to determine the best design value of the fuel cell hybrid vehicles.

Wireless Power Transfer for Electric Vehicles Charging Based on Hybrid Topology Switching With a Single Inverter

  • Chen, Yafei;Zhang, Hailong;Kim, Dong-Hee;Park, Sung-Jun;Park, Seong-Mi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.2_1
    • /
    • pp.115-124
    • /
    • 2020
  • In wireless power transfer (WPT) system, the conventional compensation topologies only can provide a constant current (CC) or constant voltage (CV) output under their resonant conditions. It is difficult to meet the CC and CV hybrid charging requirements without any other schemes. In this study, a switching hybrid topology (SHT) is proposed for CC and CV electric vehicle (EV) battery charging. By utilizing an additional capacitor and two AC switches (ACSs), a double-side LCC (DS-LCC) and an inductor and double capacitors-series (LCC-S) topologies are combined. According to the specified CC and CV charging profile, the CC and CV charging modes can be flexibly converted by the two additional ACSs. In addition, zero phase angle (ZPA) also can be achieved in both charging modes. In this method, because the operating frequency is fixed, without using PWM control, and only a small number of devices are added, it has the benefits of low-cost, easy-controllability and high efficiency. A 3.3-kW experimental prototype is configured to verify the proposed switching hybrid charger. The maximum DC efficiencies (at 3.3-kW) of the proposed SHT is 92.58%.

Development of Performance Simulator for 6-speed DCT-based Hybrid Electric Vehicle to Evaluate the Fuel Economy (연비 평가를 위한 6속 DCT기반 HEV 성능 시뮬레이터의 개발)

  • Baek, J.J.;Lee, Y.K.;Park, J.H.;Han, K.S.;Hwang, S.H.
    • Journal of Drive and Control
    • /
    • v.10 no.4
    • /
    • pp.1-6
    • /
    • 2013
  • With aggravation of environmental contamination and energy resource exhaustion, Hybrid Electric Vehicles (HEV) that can be economically operated with low fuel consumption are receiving greater attention. For performance improvement of such HEV, the development of efficient transmission can be seen as one of core technologies such as performance of components and driving strategy. Dual clutch transmission (DCT) is actively studied as a transmission type for HEV due to its advantages of having excellent power transmission efficiency based on manual transmission characteristic, resolving the problem of power interruption, and realizing driving convenience of automatic transmission (AT). In this paper, one diesel HEV equipped with 6-Speed DCT, modelled using MATLAB/Simulink, and a performance simulator developed for this vehicle are introduced. Driving simulation with driving cycles such as FTP75 and NYCC was performed using the developed performance simulator, and the simulated results regarding state of charge and fuel economy, when AT and DCT are applied to this diesel hybrid vehicle respectively, are compared. This performance simulator can be utilized to develop a control algorithm for improving the fuel economy of HEV with DCT.

Research for Recharging Braking Power Circuit of Electric Regenerative Auxiliary Brake for Hybrid Commercial Vehicles (하이브리드 상용차용 전기식 회생 보조 브레이크의 전력회수회로에 대한 연구)

  • Kim, Yoon-jae;Yoo, Chang-hee;Kwon, Sun-man;Lee, Jun-young
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.191-192
    • /
    • 2016
  • 본 논문은 전기식 회생 보조 브레이크의 넓은 범위의 입력전압을 가진 전기에너지를 받아서 넓은 범위의 출력전압을 가진 리튬이온 배터리에 충전할 수 있도록 Buck-boost 토폴로지를 제안하고, 배터리와의 절연을 위해 출력 효율이 좋은 LLC 토폴로지를 제안한다. 제안된 2단 구성 회로의 유효성은 실험을 통해 검증되었다.

  • PDF