• Title/Summary/Keyword: Hybrid Catalyst

Search Result 120, Processing Time 0.038 seconds

Conversion of CO2 and CH4 through Hybrid Reactor Composed of Plasma and Catalyst at Atmospheric Pressure (상압 플라즈마-촉매 하이브리드 반응기를 통한 CO2와 CH4의 전환처리)

  • Kim, Tae Kyung;Nguyen, Duc Ba;Lee, Won Gyu
    • Applied Chemistry for Engineering
    • /
    • v.25 no.5
    • /
    • pp.497-502
    • /
    • 2014
  • The conversion reaction of methane and carbon dioxide at an atmospheric pressure plasma reactor filled with Ni-$Al_2O_3$ and Ni-$MgAl_2O_4$ catalyst was performed. Effects of various process parameters such as the applied electric power, reaction gas flow rate, reactor temperature, mixing ratio of reactants and the presence of the catalyst on the reaction between methane and carbon dioxide were analyzed. From the analysis of the contribution of the catalyst in the reaction step, even if the temperature raised to $400^{\circ}C$, there was no spontaneous catalytic conversion of methane and carbon dioxide without plasma discharges. When the catalysts for the conversion of methane and carbon dioxide would be adopted to the plasma reactor, the careful selection of suitable catalysts and process parameters should be essential.

$NO_x$ Sensing Characteristic of $TiO_2$ Thin Film Deposited by R.F Magnetron Sputtering (R.F 마그네트론 스퍼트링으로 작성된 $TiO_2$박막의 $NO_x$ 감지 특성)

  • 고희석;박재윤;박상현
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.12
    • /
    • pp.567-572
    • /
    • 2002
  • In these days, diesel vehicle or power plant emits $NO_X\; and SO_2$ which cause air pollution like acid-rain, ozone layer destroy and optical smoke, therefore there are many kinds of methods considered for removing them such as SCR, catalyst, plasma process, and plasma-catalyst hybrid process. T$TiO_2$ is commonly used as catalyst to remove $NO_X$ gas because it have very excellent chemical characteristic as photo catalyst. In this paper, $NO_X$ sensing characteristic of $TiO_2$ thin film deposited by R.F Magnetron sputtering is investigated. A finger shaped electrode on $Al_2$O$_3$ substrate is designed and $TiO_2$ is deposited on the electrode by the magnetron sputtering deposition system. Chemical composition of the deposited $TiO_2$ thin film is $TiO_{1.9}$ by RBS analysis. When the UV is irradiated on it with flowing air, capacitance of $TiO_2$ thin film increases, however, when NO gas is put into the system with air, it immediately decreases because of photo chemical reaction. and it monotonously decreases with increasing NO concentration.

Preliminary Study on Organosolv Pulping of Acacia Hybrid

  • Chong, Eunice Wan Ni;Liew, Kang Chiang;Phiong, Siaw Kian
    • Journal of Forest and Environmental Science
    • /
    • v.29 no.2
    • /
    • pp.125-130
    • /
    • 2013
  • An attempt was made on pulp production from the fast growing plant, Acacia hybrid to determine the total yield, screened yield, Kappa number, and fibre morphology of organosolv Acacia hybrid pulp. Uniform-sized chips were taken to undergo pulping in a digester with five different concentrations of ethanol, 50%, 60%, 70%, 80% and 90% (v/v) with 1 M of sodium hydroxide as catalyst. All chips were digested in a temperature-controlled digester with constant amount of water added and temperature of $185^{\circ}C$ with the duration of three hours cooking time and correspond pressure 1.1-1.2 MPa. It was observed that increasing of ethanol concentration has led to pulp yield increment and decreased in the degree of delignification at the same time. This study was aimed to focus on the effect of the varied concentration of organic solvent towards the pulp yield and its relationship with Kappa number and pulp yield.

Study on Auto Ignition of Hybrid Rocket Using $N_2O$ Catalytic Decomposition ($N_2O$ 촉매 분해를 이용한 하이브리드 로켓 자연 점화 연구)

  • Yong, Sung-Ju;Kim, Tae-Gyu
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.202-205
    • /
    • 2010
  • Auto ignition of hybrid rocket using $N_2O$ catalytic decomposition was studied in the present study. The hybrid rocket consists of catalytic igniter, solid fuel, combustor, and nozzle. The Ru/$Al_2O_3$ catalyst for $N_2O$ decomposition was synthesized by an impregnation method, and $N_2O$ conversion as reaction temperatures was measured. The temperature change of the catalytic ignitor was measured at the operating condition, and the possibility for the auto ignition of hybrid rocket was validated.

  • PDF

Characteristics of Hydrogen Production from Methanol and Ethanol Using Plasma Reactor and Ozone Decomposition Catalyst (플라즈마 리액터 및 오존분해 촉매를 이용한 메탄올 및 에탄올로부터 수소발생특성)

  • Koo, Bon-Kook;Kim, Yong-Chun;Jang, Mun-Gug;Kim, Jong-Hyun;Park, Jae-Youn;Han, Sang-Bo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.10
    • /
    • pp.116-124
    • /
    • 2011
  • In this work, the effect of the initial concentration of methanol and ethanol, and the addition of oxygen molecules were discussed to improve the hydrogen generation using non-thermal plasma reactor effectively. In addition, the effect of ozone decomposition catalyst of manganese dioxide and its quantity was investigated. First, hydrogen concentration increased until an initial concentration of about 40,000[ppm] of methanol and thereafter it was saturated. Henceforth, hydrogen concentration decreased with increasing the oxygen percent on the carrier gas of nitrogen about both substances. Related with the effect of catalyst, it increased upto 60[g], but it was not changed largely after that. Consequently, it is confirmed that the hybrid process using plasma process and catalytic surface chemical reaction is a very promising way to increase the efficiency of hydrogen generation as investigated in this work.

AN EXPLORATORY STUDY OF THE EMISSION REDUCTION TECHNOLOGIES COMPLIANT WITH SULEV REGULATIONS

  • Kim, In Tak;Lee, Woo Jik;Yoon, Jong Seok;Park, Chung Kook
    • International Journal of Automotive Technology
    • /
    • v.2 no.2
    • /
    • pp.63-75
    • /
    • 2001
  • This paper describes the development of THC reduction technologies compliant with SULEV regulations. Technologies embodied by the developmental work include improvement of fuel spray atomization, quick warm-up through coolant control shut of, and acceleration of fuel atomization for the fast rise of cylinder head temp inside the water jacket as well as the improvement of combustion state. The technologies likewise entail reduced HC while operating in lean A/F condition during engine warm-up with the cold lean burn technology, individual cylinder A/F control for improvement of catalytic converting efficiency, after-treatment such as thin-wall catalyst, HC-adsorber and EHC and etc, through vehicle application evaluation in cold start. We carried out an experimental as well as a practical study against SULEV regulations, and the feasibility of adopting these items in vehicle was likewise investigated.

  • PDF

Synthesis of Pt/alloy Nanoparticles by Electrical Wire Explosion in Liquid Media and its Characteristics (액중 전기선 폭발 공정을 이용한 Pt/alloy 하이브리드 나노입자의 제조 및 그 특성)

  • Koo, Hye Young;Yun, Jung-Yeul;Yang, Sangsun;Lee, Hye-Moon
    • Particle and aerosol research
    • /
    • v.8 no.2
    • /
    • pp.83-88
    • /
    • 2012
  • The electrical wire explosion process in liquid media is promising for nano-sized metal and/or alloy particles. The hybrid Pt/Fe-Cr-Al and Pt/Ni-Cr-Fe nanoparticles for exhaust emission control system are synthesized by electrical wire explosion process in liquid media. The alloy powders have spherical shape and nanometer size. According to the wire component, while Pt/Fe-Cr-Al nanoparticles are shown the well dispersed Pt on the Fe-Cr-Al core particle, Pt/Ni-Cr-Fe nanoparticles are shown the partially separated Pt on the Ni-Cr-Fe core particle. Morphologies and component of two kinds of hybrid nano catalyst particles were characterized by transmission electron microscope and energy dispersive X-ray spectroscopy analysis.

Decomposition Characteristics of Cyano-compounds in Non-thermal Packed-Bed-Plasma-Reactor (충전형 저온 플라즈마 반응기에서 시안 화합물의 분해 특성)

  • Ryu, Sam-Gon;Park, Myung-Kyu;Lee, Hae-Wan
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.343-347
    • /
    • 2012
  • The decomposition behaviors of gaseous cyanides in non-thermal plasma-catalyst hybrid reactor have been investigated with the variation of discharge power, influent concentration of cyanide, humidity of air carrier and packed materials in the reactor. Destruction of cyanides by plasma only process was very difficult compared to that of trichloroethylene. But the destruction efficiencies of cyanides were dramatically improved through packing alumina or Pt/alumina bead in the plasma discharge region. From the results, it could be assumed that thermal catalytic effect is involved simultaneously with plasma in the reaction of cyanides destruction on the alumina or Pt/alumina packed plasma reactor.

Preparation and Thermal Degradation Behavior of WO3-TiO2 Catalyst for Selective Catalytic Reduction of NOx (NOx 제거용 WO3-TiO2 계 SCR 촉매 제조 및 열적열화거동연구)

  • Shin, Byeongkil;Kim, Janghoon;Yoon, Sanghyeon;Lee, Heesoo;Shin, Dongwoo;Min, Whasik
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.8
    • /
    • pp.596-600
    • /
    • 2011
  • Thermal degradation behavior of a $WO_3-TiO_2$ monolithic catalyst was investigated in terms of structural, morphological, and physico-chemical analyses. The catalyst with 4 wt.% $WO_3$ contents were prepared by a wet-impregnation method, and a durability test of the catalysts were performed in a temperature range between $400^{\circ}C$ and $800^{\circ}C$ for 3 h. An increase of thermal stress decreased the specific surface area, which was caused by grain growth and agglomeration of the catalyst particles. The phase transition from anatase to rutile occurred at around $800^{\circ}C$ and a decrease in the Brønsted acid sites was confirmed by structural analysis and physico-chemical analysis. A change in Brønsted acidity can affect to the catalytic efficiency; therefore, the thermal degradation behavior of the $WO_3-TiO_2$ catalyst could be explained by the transition to a stable rutile phase of $TiO_2$ and the decrease of specific surface area in the SCR catalyst.