Browse > Article
http://dx.doi.org/10.14478/ace.2014.1071

Conversion of CO2 and CH4 through Hybrid Reactor Composed of Plasma and Catalyst at Atmospheric Pressure  

Kim, Tae Kyung (Department of Chemical Engineering, Kangwon National University)
Nguyen, Duc Ba (Department of Chemical Engineering, Kangwon National University)
Lee, Won Gyu (Department of Chemical Engineering, Kangwon National University)
Publication Information
Applied Chemistry for Engineering / v.25, no.5, 2014 , pp. 497-502 More about this Journal
Abstract
The conversion reaction of methane and carbon dioxide at an atmospheric pressure plasma reactor filled with Ni-$Al_2O_3$ and Ni-$MgAl_2O_4$ catalyst was performed. Effects of various process parameters such as the applied electric power, reaction gas flow rate, reactor temperature, mixing ratio of reactants and the presence of the catalyst on the reaction between methane and carbon dioxide were analyzed. From the analysis of the contribution of the catalyst in the reaction step, even if the temperature raised to $400^{\circ}C$, there was no spontaneous catalytic conversion of methane and carbon dioxide without plasma discharges. When the catalysts for the conversion of methane and carbon dioxide would be adopted to the plasma reactor, the careful selection of suitable catalysts and process parameters should be essential.
Keywords
syngas; plasma reforming reaction; greenhouse gas; atmospheric pressure plasma; catalytic hybrid reactor;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 H. Hokazono and H. Fujimoto, Theoretical analysis of the $CO_2$ molecule decomposition and contaminants yield in transversely excited atmospheric $CO_2$ laser discharge, J. Appl. Phys., 62, 1585-1594 (1987).   DOI
2 U. Roland, F. Holzer, and F. D. Kopinke, Combination of non-thermal plasma and heterogeneous catalysis for oxidation of volatile organic compounds: Part 2. Ozone decomposition and deactivation of ${\gamma}-Al_2O_3$, Appl. Catal. B: Environ., 58, 217-226 (2005).   DOI   ScienceOn
3 M. W. Li, G. H. Xu, Y. L. Tian, L. Chen, and H. F. Fu, Carbon dioxide reforming of methane using DC corona discharge plasma reaction, J. Phys. Chem. A, 108, 1687-1693 (2004).   DOI   ScienceOn
4 Y. P. Zhang, Y. Li, Y. Wang, C. J. Liu, and B. Eliasson, Plasma methane conversion in the presence of carbon dioxide using dielectric-barrier discharges, Fuel Process. Technol., 83, 101-109 (2003).   DOI
5 T. K. Kim and W. G. Lee, Conversion characteristics of $CH_4$ and $CO_2$ in an atmospheric pressure plasma reactor, Appl. Chem. Eng., 22, 653-657 (2011).
6 T. Jiang, Y. Li, C. J. Liu, G. H. Xu, B. Eliasson, and B. Xue, Plasma methane conversion using dielectric-barrier discharges with zeolite A, Catal. Today, 72, 229-235 (2002).   DOI   ScienceOn
7 X. Tao, F. Qi, Y. Yin, and X. Dai, $CO_2$ reforming of $CH_4$ by combination of thermal plasma and catalyst, Int. J. Hydrogen Energy, 33, 1262-1265 (2008).   DOI   ScienceOn
8 X. Tao, M. Bai, Q. Wu, Z. Huang, Y. Yin, and X. Dai, $CO_2$ reforming of $CH_4$ by binode thermal plasma, Int. J. Hydrogen Energy, 34, 9373-9378 (2009).   DOI   ScienceOn
9 D. Li, X. Li, M. Bai, X. Tao, S. Shang, X. Dai, and Y. Yin, $CO_2$ reforming of $CH_4$ by atmospheric pressure glow discharge plasma: A high conversion ability, Int. J. Hydrogen Energy, 34, 308-313 (2009).
10 T. K. Kim and W. G. Lee, Reaction between methane and carbon dioxide to produce syngas in dielectric barrier discharge system, J. Ind. Eng. Chem., 18, 1710-1714 (2012).   DOI   ScienceOn
11 A. Indarto, J. W. Choi, H. Lee, and H. K. Song, Effect of additive gases on methane conversion using gliding arc discharge, Energy, 31, 2986-2995 (2006).   DOI   ScienceOn
12 Y. Li, G. H. Xu, C. J. Liu, B. Eliasson, and B. Z. Xue, Co-generation of syngas and higher hydrocarbons from $CO_2$ and $CH_4$ using dielectric-barrier discharge: Effect of electrode materials, Energy Fuels, 15, 299-302 (2001).   DOI   ScienceOn
13 H. K. Song, H. Lee, J. W. Choi, and B. K. Na, Effect of electrical pulse forms on the $CO_2$ reforming of methane using atmospheric dielectric barrier discharge, Plasma Chem. Plasma Process., 24, 57-72 (2004).   DOI   ScienceOn
14 R. Martinez, E. Romero, C. Guimon, and R. Bilbao, $CO_2$ reforming of methane over coprecipitated Ni-Al catalysts modified with lanthanum, Appl. Catal. A: Gen., 274, 139-149 (2004).   DOI   ScienceOn
15 K. Zhang, B. Eliasson, and U. Kogelschatz, Direct conversion of greenhouse gases to synthesis gas and $C_4$ hydrocarbons over zeolite HY promoted by a dielectric-barrier discharge, Ind. Eng. Chem. Res., 41, 1462-1468 (2002).   DOI   ScienceOn
16 F. Pompeo, N. Nichio, O. Ferretti, and D. Resasco, Study of Ni catalysts on different supports to obtain synthesis gas, Int. J. Hydrogen Energy, 30, 1399-1405 (2005).   DOI   ScienceOn
17 S. H. Jung, S. M. Park, S. H. Park, and S. D. Kim, Surface modification of fine powders by atmospheric pressure plasma in a circulating fluidized bed reactor, Ind. Eng. Chem. Res., 43, 5483-5488 (2004).   DOI
18 M. Kraus, B. Eliasson, U. Kogelschatz, and A. Wokaun, $CO_2$ reforming of methane by the combination of dielectric-barrier discharges and catalysis, Phys. Chem. Chem. Phys., 3, 294-300 (2001).   DOI   ScienceOn
19 H. L. Chen, H. M. Lee, S. H. Chen, and M. B. Chang, Review of packed-bed plasma reactor for ozone generation and air pollution control, Ind. Eng. Chem. Res., 47, 2122-2130 (2008).   DOI   ScienceOn
20 S. Futamura, H. Kabashima, and H. Einaga, Steam reforming of aliphatic hydrocarbons with nonthermal plasma, IEEE Trans. Ind. Appl., 40, 1476-1481 (2004).   DOI   ScienceOn
21 D. B. Nguyen and W. G. Lee, Effect of ambient condition for coaxial dielectric barrier discharge reactor on $CO_2$ reforming of $CH_4$ to syngas, J. Ind. Eng. Chem., 20, 972-978 (2014).   DOI
22 R. Marques, S. D. Costa, and P. D. Costa, Plasma-assisted catalytic oxidation of methane: On the influence of plasma energy deposition and feed composition, Appl. Catal. B: Environ., 82, 50-57 (2008).   DOI
23 H. Le, L. L. Lobban, and R. G. Mallinson, Some temperature effects on stability and carbon formation in low temperature ac plasma conversion of methane, Catal. Today, 89, 15-20 (2004).   DOI   ScienceOn
24 S. L. Yao, M. Okumoto, A. Nakayama, and E. Suzuki, Plasma reforming and coupling of methane with carbon dioxide, Energy Fuels, 15, 1295-1299 (2001).   DOI   ScienceOn