• 제목/요약/키워드: Humidity monitoring

검색결과 440건 처리시간 0.024초

Development of an environment field monitoring system to measure crop growth

  • Kim, Yeon-Soo;Kim, Du-Han;Chung, Sun-Ok;Choi, Chang-Hyun;Choi, Tae-Hyun;Kim, Yong-Joo
    • 농업과학연구
    • /
    • 제46권1호
    • /
    • pp.57-65
    • /
    • 2019
  • The purpose of this study was to develop an environment field monitoring system to measure crop growth. The environment field monitoring system consisted of sensors, a data acquisition system, and GPS. The sensors used in the environment field monitoring system consisted of an ambient sensor, a soil sensor, and an intensity sensor. The temperature and humidity of the atmosphere were measured with the ambient sensor. The temperature, humidity, and EC of the soil were measured with the soil sensor. The data acquisition system was developed using the Arduino controller. The field monitoring data were collected before a rainy day, on a rainy day, and after the rainy day. The measured data using the environment field monitoring system were compared with the Daejeon regional meteorological office data. The correlation between the data from the environment field monitoring system and the data from the Daejeon regional meteorological office was analyzed for performance evaluation. The correlation of the temperature and humidity of the atmosphere was analyzed because the Daejeon regional meteorological office only provided data for the temperature and humidity of the atmosphere. The correlation coefficients were 0.86 and 0.90, respectively. The result showed a good correlation between the data from the environment field monitoring system and the data from the Daejeon regional meteorological office. Therefore, the developed system could be applied to monitoring the field environment of agricultural crops.

Environmental Monitoring Using Comfort Sensing System

  • Na, Dae-Suk;Kang, Jeong-Ho;Park, Se-Kwang
    • 센서학회지
    • /
    • 제12권1호
    • /
    • pp.24-33
    • /
    • 2003
  • This research is about a comfort sensing system for human environmental monitoring using a one-bodied humidity and temperature sensor and an air flow sensor. The thermal comfort that a human being feels in indoor environment has been known to be influenced mostly by six parameters, i.e. air temperature, radiation, air flow, humidity, activity level and clothing thermal resistance. Considering an environmental monitoring, we have designed and fabricated a one-bodied humidity and temperature sensor and an air flow sensor that detect air relative humidity, temperature and air flow in human environment using surface micromachining technologies. Micro-controller calculates a PMV (predicted mean vote) and CSV (comfort sensing vote) with sensing signals and display a PMV on LCD (liquid crystal display) for human comfort on indoor climate. Our work has demonstrated that a comfort sensing system can provide an effective means of measuring and monitoring the indoor comfort sensing index of a human being. Experimental results with simulated environment clearly suggest that our comfort sensing system can be used in many applications such as air conditioning system, feedback controlling in automobile, home and hospital etc..

IoT를 사용한 센서 네트워크 기반의 실시간 토양 습도 모니터링 (Real-Time Soil Humidity Monitoring Based on Sensor Network Using IoT)

  • 김경헌;김희동
    • 한국전기전자재료학회논문지
    • /
    • 제35권5호
    • /
    • pp.459-465
    • /
    • 2022
  • This paper reports a method to use a wireless sensor network deployed in the field to real-time monitor soil moisture, warning when the moisture level reaches a specific value, and wirelessly controlling an additional device (LED or water supply system, etc.). In addition, we report all processes related to wireless irrigation system, including field deployment of sensors, real-time monitoring using a smartphone, data calibration, and control of additional devices deployed in the field by smartphone. A commercially available open-source Internet of Things (IoT) platform, NodeMCU, was used, which was combined with a 9V battery, LED and soil humidity sensor to be integrated into a portable prototype. The IoT-based soil humidity sensor prototype deployed in the field was installed next to a tree for on-site demonstration for the measurement of soil humidity in real-time for about 30 hours, and the measured data was successfully transmitted to a smartphone via Wifi. The measurement data were automatically transmitted via e-mail in the form of a text file, stored on the web, followed by analyses and calibrations. The user can check the humidity of the soil real-time through a personal smartphone. When the humidity of a soil reached a specific value, an additional device, an LED device, placed in the field was successfully controlled through the smartphone. This LED can be easily replaced by other electronic devices such as water supplies, which can also be controlled by smartphones. These results show that farmers can not only monitor the condition of the field real-time through a sensor monitoring system manufactured simply at a low cost but also control additional devices such as irrigation facilities from a distance, thereby reducing unnecessary energy consumption and helping improve agricultural productivity.

유비쿼터스 센서 네트워크를 이용한 실시간 온.습도 기록 및 모니터링 시스템 개발 (Development of Realtime Temperature & Humidity Logging and Monitoring System using Ubiquitous Sensor Network)

  • 천성심;김정자;원용관
    • 전자공학회논문지CI
    • /
    • 제48권2호
    • /
    • pp.96-105
    • /
    • 2011
  • 유비쿼터스 센서 네트워크(USN: Ubiquitos Sensor Network)는 우리 생활 전반적으로 다양하게 적용되고 있는 기술이다. 본 논문은 온도와 습도를 일정하게 유지해야 할 필요가 있는 공간을 효율적으로 관리할 수 있는 USN 기술 기반의 시스템에 대한 설계 및 이의 구현 사례를 소개한다. 본 시스템은 온 습도 센서가 내장된 다수의 센서 모듈을 이용하여 대상 공간에 무선 센서 네트워크를 구성하고, 각 모듈의 센서로부터 감지된 온 습도 정보를 실시간으로 수집하여 Database에 기록함과 동시에 사용자가 그래픽 인터페이스를 통해 대상 공간의 온 습도 현황을 Monitoring 할 수 있는 시스템이다. 또한, 각 온 습도 센서 모듈의 관리 대상 공간에 대하여 특정 온 습도 값을 지정하고 이 값과 일정 수준 이상의 오차가 발생하면 경고를 발생토록 한다. 본 논문에서 소개하는 시스템은 수동적이었던 기존의 데이터 수집 및 관리 방식을 자동화함으로서 보다 편리하고 효율적으로 대상 공간의 온 습도를 관리할 수 있으며, 저장된 데이터를 이용하여 온 습도로 인해 발생된 문제점에 대한 사후 분석 및 환경의 개선에 필요한 정보를 얻을 수 있다.

Fiber-optic humidity sensor system for the monitoring and detection of coolant leakage in nuclear power plants

  • Kim, Hye Jin;Shin, Hyun Young;Pyeon, Cheol Ho;Kim, Sin;Lee, Bongsoo
    • Nuclear Engineering and Technology
    • /
    • 제52권8호
    • /
    • pp.1689-1696
    • /
    • 2020
  • In this study, we developed a fiber-optic humidity sensor (FOHS) system for the monitoring and detection of coolant leakage in nuclear power plants. The FOHS system includes an FOHS, a spectrometer, a halogen white-light source, and a Y-coupler. The FOHS is composed of a humidity-sensing material, a metal tube, a multi-mode plastic optical fiber, and a subminiature version A (SMA) fiber-optic connector. The humidity-sensing material is synthesized from a mixture of polyvinylidene fluoride (PVDF) in dimethyl sulfoxide (DMSO) and hydroxyethyl cellulose (HEC) in distilled water. We measured the optical intensity of the light signals reflected from the FOHS placed inside the humidity chamber with relative humidity (RH) variation from 40 to 95%. We found that the optical intensity of the sensing probe increased linearly with the RH. The reversibility and reproducibility of the FOHS were also evaluated.

비접촉 생체신호 모니터링 응용을 위한 세라믹/메탈 할라이드 복합막 기반 습도센서 개발 (Development of Humidity Sensor Based on Ceramic/Metal Halide Composite Films for Non-Contact Biological Signal Monitoring Applications)

  • 박태웅;김익수;김민지;박철환;서의경;오종민
    • 한국전기전자재료학회논문지
    • /
    • 제35권4호
    • /
    • pp.412-417
    • /
    • 2022
  • Capacitive-type humidity sensors with a high sensitivity and fast response/recovery times have attracted a great attention in non-contact respiration biological signal monitoring applications. However, complicated fabrication processes involving high-temperature heat treatment for the hygroscopic film is essential in the conventional ceramic-based humidity sensors. In this study, a non-toxic ceramic/metal halide (BaTiO3(BT)/NaCl) humidity sensor was prepared at room temperature using a solvent-free aerosol deposition process (AD) without any additional process. Currently prepared BT/NaCl humidity sensor shows an excellent sensitivity (245 pF/RH%) and superior response/recovery times (3s/4s) due to the NaCl ionization effect resulting in an immense interfacial polarization. Furthermore, the non-contact respiration signal variation using the BT/NaCl sensor was determined to be over 700% by maintaining the distance of 20 cm between the individual and the sensor. Through the AD-fabricated sensor in this study, we expect to develop a non-contact biological signal monitoring system that can be applied to various fields such as respiratory disease detection and management, infant respiratory signal observation, and touchless skin moisture sensing button.

블루투스를 이용한 신생아 인공 보육기의 중앙감시 장치 (A Centralized Monitoring System for Infant Incubators Using Bluetooth)

  • 김주식;안현식;정구민
    • 융합신호처리학회논문지
    • /
    • 제7권1호
    • /
    • pp.33-37
    • /
    • 2006
  • 본 논문에서는 블루투스를 이용하여 신생아를 중앙 감시하는 장치를 제안하고 구현하였다. 기존의 신생아 중앙 감시 장치는 부피가 크기 때문에 신생아에 대한 부착이 불편하고 유선으로 연결되어 측정 및 감시 시에 휴대가 어려워서 공간의 제약을 가지는 단점이 있다. 이러한 단점을 해소하기 위해서 블루투스를 이용한 신생아 보육장치를 제안하였다. 제안된 시스템은 수신부와 송신부로 구성된다. 송신부는 온도센서, 습도 센서, ECG 측정 장치 및 블루투스 모듈로 구성되며 인류베이터의 온도, 습도 및 ECG 데이터를 측정한 후 블루투스를 이용하여 송신하는 기능을 수행한다. 수신 시스템은 송신 시스템에서 전송한 신호를 블루투스 수신 모듈을 통해 수신하여 인큐베이터 별 송신 시스템의 고유한 식별부호와 심전도 및 온습도 신호를 분리하여 각 신호들을 화면에 표시함으로써 중앙 감시가 효과적으로 이루어지도록 한다. 또한 수신부의 시스템 관리자는 신생아 보육장치와 신생아의 상태를 중앙 감시할 수 있도록 하는 기능을 한다. 제안된 시스템은 다양한 환경에서 신생아 보육장치의 원격 진단에 유용하게 쓰일 수 있을 것으로 생각된다.

  • PDF

Design of Data Center Environmental Monitoring System Based On Lower Hardware Cost

  • Nkenyereye, Lionel;Jang, Jongwook
    • Journal of Multimedia Information System
    • /
    • 제3권3호
    • /
    • pp.63-68
    • /
    • 2016
  • Environmental downtime produces a significant cost to organizations and makes them unable to do business because what happens in the data center affects everyone. In addition, the amount of electrical energy consumed by data centers increases with the amount of computing power installed. Installation of physical Information Technology and facilities related to environmental concerns, such as monitoring temperature, humidity, power, flood, smoke, air flow, and room entry, is the most proactive way to reduce the unnecessary costs of expensive hardware replacement or unplanned downtime and decrease energy consumed by servers. In this paper, we present remote system for monitoring datacenter implementing using open-source hardware platforms; Arduino, Raspberry Pi, and the Gobetwino. The sensed data displayed through Arduino are transferred using Gobetwino to the nearest host server such as temperature, humidity and distance every time an object hitting another object or a person coming in entrance. The raspberry Pi records the sensed data at the remote location. The objective of collecting temperature and humidity data allows monitoring of the server's health and getting alerts if things start to go wrong. When the temperature hits $50^{\circ}C$, the supervisor at remote headquarters would get a SMS, and then they would take appropriate actions to reduce electrical costs and preserve functionality of servers in data centers.

Electrical impedance-based crack detection of SFRC under varying environmental conditions

  • Kang, Man-Sung;An, Yun-Kyu;Kim, Dong-Joo
    • Smart Structures and Systems
    • /
    • 제22권1호
    • /
    • pp.1-11
    • /
    • 2018
  • This study presents early crack detection of steel fiber-reinforced concrete (SFRC) under varying temperature and humidity conditions using an instantaneous electrical impedance acquisition system. SFRC has the self-sensing capability of electrical impedance without sensor installation thanks to the conductivity of embedded steel fibers, making it possible to effectively monitor cracks initiated in SFRC. However, the electrical impedance is often sensitively changed by environmental effects such as temperature and humidity variations. Thus, the extraction of only crack-induced feature from the measured impedance responses is a crucial issue for the purpose of structural health monitoring. In this study, the instantaneous electrical impedance acquisition system incorporated with SFRC is developed. Then, temperature, humidity and crack initiation effects on the impedance responses are experimentally investigated. Based on the impedance signal pattern observation, it is turned out that the temperature effect is more predominant than the crack initiation and humidity effects. Various crack steps are generated through bending tests, and the corresponding impedance damage indices are extracted by compensating the dominant temperature effect. The test results reveal that propagated cracks as well as early cracks are successfully detected under temperature and humidity variations.

Development of Multi-Sensor Convergence Monitoring and Diagnosis Device based on Edge AI for the Modular Main Circuit Breaker of Korean High-Speed Rolling Stock

  • Byeong Ju, Yun;Jhong Il, Kim;Jae Young, Yoon;Jeong Jin, Kang;You Sik, Hong
    • International Journal of Advanced Culture Technology
    • /
    • 제10권4호
    • /
    • pp.569-575
    • /
    • 2022
  • This is a research thesis on the development of a monitoring and diagnosis device that prevents the risk of an accident through monitoring and diagnosis of a modular Main Circuit Breaker (MCB) using Vacuum Interrupter (VI) for Korean high-speed rolling stock. In this paper, a comprehensive MCB monitoring and diagnosis was performed by converging vacuum level diagnosis of interrupter, operating coil monitoring of MCB and environmental temperature/humidity monitoring of modular box. In addition, to develop an algorithm that is expected to have a similar data processing before the actual field test of the MCB monitoring and diagnosis device in 2023, the cluster analysis and factor analysis were performed using the WEKA data mining technique on the big data of Korean railroad transformer, which was previously researched by Tae Hee Evolution with KORAIL.