• 제목/요약/키워드: Humidity control

검색결과 1,159건 처리시간 0.034초

외기 전용 공조기의 동특성 시뮬레이션 (Dynamic Simulation of a Dedicated Outdoor Air-conditioning System)

  • 김정민;김영일;정광섭;박승태
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2007년도 동계학술발표대회 논문집
    • /
    • pp.322-327
    • /
    • 2007
  • Dedicated outdoor air-conditioning(DOA) system that utilizes pre-cooling and desiccant dehumidification can be superior to conventional cooling and reheating system with respect to energy consumption and indoor thermal comfort. In this work, simulation has been conducted to study various factors that affect the performance of DOA. Dynamic simulation shows the transient variation of temperature and humidity as the on/off control logic is imposed. Exit humidity of process air and flow rate are varied to study the effect on exit temperature of process air, dehumidification quantity, required regeneration temperature and exit humidity of regeneration air. For an outdoor air condition of $28.5^{\circ}C$ temperature, 16 g/kg humidity ratio and 2000 cmh flow rate, the dehumidification efficiency is increased by 4.6% as the flow rate is doubled.

  • PDF

Influence of air pressure, temperature, humidity and CO$_{2}$ concentration on optical phase changes in thin films

  • Kim, Moon-Hwan;Tachikawa, Yoshihiko;Ogita, Eiji;Ueda, Toshitsugu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1989년도 한국자동제어학술회의논문집; Seoul, Korea; 27-28 Oct. 1989
    • /
    • pp.799-804
    • /
    • 1989
  • A new method for measuring optical phase changes of reflection beam from optical mirror is proposed. The optical phase change is liable to change with varying atmosphere conditions. This optical phase changes are measured against air pressure, temperature, humidity and CO$\_$2/ concentration variations. It is clarified that the optical phase changes are most effected by humidity change.

  • PDF

우드세라믹을 첨가한 기능성 한지가 실내습도 조절에 미치는 영향 (Effect of Functional Hanji Using Wood Ceramics on Indoor Humidity Control)

  • 임현아;오승원;강진하
    • 펄프종이기술
    • /
    • 제38권2호
    • /
    • pp.35-42
    • /
    • 2006
  • This study was carried out to develop a new application field of traditional Hanji and obtain the basic data for producing functional Hanji using sawdust ceramics and rice-husk ceramics as an architectural material. The results measuring water vapor permeance and water vapor absorption for using window materials and wallpapers are as follows. Hanji wallpaper has good things in controlling indoor space comfortably. Particularly, ability of controlling humidity of Hanji wallpaper affects indoor space comfort and human health. In the case indoor humidity is higher than outdoor humidity, according to the addition of ceramics, Hanji wallpapers maintain the humidity by retaining water vapor molecules in the pores of ceramics. Thus the Hanji wallpapers with ceramics, in particular rice-husk ceramics, make it superior to non-ceramics Hanji wallpapers in maintaining the humidity indoors.

황색종 연초 건조중 황변기 온습도차가 잎담배 색상 및 화학성분에 미치는 영향 (EFFECT OF TEMPERATURE AND HUMIDITY ON THE LEAF COLOR AND CHEMICAL COMPONENTS DURING THE YELLOWING STAGE OF FLUE-CURING)

  • 황건중;석영선;이한석
    • 한국연초학회지
    • /
    • 제7권2호
    • /
    • pp.129-139
    • /
    • 1985
  • cent was carried out to study on the effect of temperature and humidity to chemical tobacco leaves during the yellowing stage. The results were follows : In the condition of high humidity and low temperature, yellowing time was delayed ; leaf color appeared lack clearness. In the higher temperature and the lower humidity during the yellowing stage : total sugar, reducing sugar and malic acid content were increased. Decomposition of nitrogenous components elevated in $38^{\circ}C$, 85%RH. Changes of total nitrogen content correlated with total curing time. Adecrease of linolenic acid with a corresponding increase of chlorogenic acid proceeded in the condition of low temperature and high humidity. In a view of tobacco quality by chemical components, the low temperature and high humidity during the yellowing stage decreased quality of tobacco leaves. It is considered to control of the proper condition of temperature and humidity during the yellowing.

  • PDF

3D프린팅 공정 중 공기 습도에 따른 출력물의 인장 강도에 관한 연구 (A Study on Tensile Strength of the Product According to Humidity During 3D Printing Process)

  • 이송연;허용정
    • 반도체디스플레이기술학회지
    • /
    • 제20권4호
    • /
    • pp.177-181
    • /
    • 2021
  • Scaffolds protect the sensor in the body. Scaffolds are made of a bioabsorbable polymer. The polymer process is sensitive to humidity. Inside of the 3D printer has been improved to control the humidity. Specimens were produced by injection molding and 3D printer. 3D printed specimens were printed under various humidity conditions. We measured tensile strength of the injection-molded specimen and tensile strength of the 3d printing specimen. We compared tensile strength of the injection-molded specimen and tensile strength of the 3d printing specimen. Tensile strength of the injection-molded specimen is 557 kgf/cm2. We confirmed tensile strength of the specimen was highest at 741 kgf/cm2 when the humidity was 10 %. We confirmed lower the humidity, higher tensile strength of the polymer product.

복합환경제어를 위한 광량 센서장치의 최적구동 (Optimal Driving of Photo-Sensor for Control of A Mixed Environment)

  • 김종만;김원섭;김형석
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2011년도 제42회 하계학술대회
    • /
    • pp.2110-2111
    • /
    • 2011
  • Optimal Driving of Photo-Sensor for Control of a Mixed Environment was realized. The control system was carried out to investigate into the characteristics of Real time control of temperature and humidity at sprouts cutivators. Especially, for led's control for the cultivation of sprouts we have composed a Combined Automatic Control System possible for the control of temperature and humidity at the same time. The applied Photo-Sensor measurement are blue, green, red, white, yellow leds. And we had also designed the Web Programming for the automatic control about sprouts plants.

  • PDF

Adaptive Fuzzy Output Feedback Control based on Observer for Nonlinear Heating, Ventilating and Air Conditioning System

  • Baek, Jae-Ho;Hwang, Eun-Ju;Kim, Eun-Tai;Park, Mi-gnon
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권2호
    • /
    • pp.76-82
    • /
    • 2009
  • A Heating, Ventilating and Air Conditioning (HVAC) system is a nonlinear multi-input multi-output (MIMO) system. This system is very difficult to control the temperature and the humidity ratio of a thermal space because of complex nonlinear characteristics. This paper proposes an adaptive fuzzy output feedback control based on observer for the nonlinear HVAC system. The nonlinear HVAC system is linearized through dynamic extension. State observers are designed for estimating state variables of the HVAC system. Fuzzy systems are employed to approximate uncertain nonlinear functions of the HVAC system with unavailable state variables. The obtained controller compares with an adaptive feedback controller. Simulation is given to demonstrate the effectiveness of our proposed adaptive fuzzy method.

온돌을 이용한 바닥복사냉방의 제습시스템 적용에 관한 연구 (A Study on the Application of the Dehumidification System for Radiant Floor Cooling Using Ondol)

  • 임재한;여명석;양인호;김광우
    • 설비공학논문집
    • /
    • 제14권7호
    • /
    • pp.607-616
    • /
    • 2002
  • This study has been conducted to evaluate the applicability of the control method in the dehumidification-integrated radiant floor cooling system in terms of stability of the room air temperature and the control variables through experiments. To do this, the relationship between the control variables in preventing floor surface condensation is first analyzed and the control method is predetermined through simulations. The results are as follows. First, it is necessary to determine the operation status of the dehumidification system according to the relationship between floor surface temperature and dew point temperature in the conditioned space. Second, outdoor reset with indoor temperature feedback control is better than on/off bang-bang control with respect to temperature stability in controlling the room air temperature and the possibility of energy savings. Finally, the humidity sensor can be located with the current thermostat in that there are small differences in absolute humidity in vertical distribution.

인공광을 이용한 접목표 활착촉진 시스템의 시작품 설계 - 활착촉진 시스템 내의 기온과 상대습도 분포에 미치는 기류속도의 효과 (Design of a Prototype System for Graft-Taking Enhancement of Grafted Seedlings Using Artificial Lighting - Effect of air current speed on the distribution of air temperature and relative humidity in a graft-taking enhancement system)

  • 김용현
    • Journal of Biosystems Engineering
    • /
    • 제25권3호
    • /
    • pp.213-220
    • /
    • 2000
  • Grafting of fruit-bearing vegetables has been widely used to increase the resistance to soil-borne diseases, to increase the tolerance to low temperature or to soil salinity, to increase the plant vigor, and to extend the duration of economic harvest time. After grafting, it is important to control the environment around grafted seedlings for the robust joining of a scion and rootstock. Usually the shading materials and plastic films are used to keep the high relative humidity and low light intensity in greenhouse or tunnel. It is quite difficult to optimally control the environment for healing and acclimation of grafted seedlings under natural light. So the farmers or growers rely on their experience for the production of grafted seedling with high quality. If artificial light is used as a lighting source for graft-taking of grafted seedlings, the light intensity and photoperiod can be easily controlled. The purpose of this study was to develop a prototype system for the graft-taking enhancement of grafted seedlings using artificial lighting and to investigate the effect of air current speed on the distribution of air temperature and relative humidity in a graft-taking enhancement system. A prototype graft-taking system was consisted by polyurethane panels, air-conditioning unit, system controller and lighting unit. Three band fluorescent lamps (FL20SEX-D/18, Kumho Electric, Inc.) were used as a lighting source. Anemometer (Climomaster 6521, KANOMAX), T-type thermocouples and humidity sensors (CHS-UPS, TDK) were used to measure the air current speed, air temperature and relative humidity in a graft-taking system. In this system, air flow acted as a driving force for the diffusion of heat and water vapor. Air current speed, air temperature and relative humidity controlled by a programmable logic controller (UP750, Yokogawa Electric Co) and an inverter (MOSCON-G3, SAMSUNG) had an even distribution. Distribution of air temperature and relative humidity in a graft-taking enhancement system was fairly affected by air current speed. Air current speed higher than 0.1m/s was required to obtain the even distribution of environmental factors in this system. At low air current speed of 0.1m/s, the evapotranspiration rate of grafted seedlings would be suppressed and thus graft-taking would be enhanced. This system could be used to investigate the effects of air temperature, relative humidity, air current speed and light intensity on the evaportranspiration rate of grafted seedlings.

  • PDF

이류체 포그시스템 및 천연물을 이용한 친환경적 가루이 방제 (Eco-friendly Control of Whiteflies by Two-Fluid Fogging System with Natural Substances in Greenhouses)

  • 김성은;이상돈;이문행;김영식
    • 생물환경조절학회지
    • /
    • 제21권2호
    • /
    • pp.114-119
    • /
    • 2012
  • 본 연구는 이류체 포그시스템과 천연물을 이용하여 효과적이고 친환경적인 가루이 예방 및 방제 방법을 구명하기 위해 수행되었다. 실험은 단동형 플라스틱하우스에서 공시품종으로 비타미니를 사용하여 총 4회 수행되었다. 1차 실험에서는 별도의 습도조절 없이 이류체 포그시스템을 작동하였다고, 2차 실험에서는 이류체 포그시스템으로 습도를 70% 이상으로 제어하였다. 3차 실험에서는 이류체 포그시스템으로 1.5mg/L Neem Oil을 분무처리하였고, 4차 실험에서는 2mg/L 농도의 Oleic acid를 분무처리하였다. 1차 실험에서 분무처리구의 가루이의 밀도는 크게 감소하였다. 2차 실험에서는 1차 실험보다도 분무효과가 더 크게 조사되었다. 이를 통해 습도를 높게 관리하여 미세수분입자의 양이 많고 또한 오래 공중에 머물게 하는 것이 가루이 방제에 더욱 효과적인 것으로 판단되었다. 3차 및 4차 실험에서 Neem Oil과 Oleic acid의 방제효과는 78%와 76.4%로, 분무만 했을 때의 53%보다 큰 효과를 나타내었다. 따라서 가루이 방제에 화학 살충제 대신에 이류체 포그시스템을 이용하여 두 가지 천연물을 사용하는 것이 매우 좋은 방법이며, 특히 저렴한 Oleic acid를 이용하는 것이 경제적인 것으로 사료된다. 또한 평소에 이류체 포그시스템으로 온도와 습도관리를 하다가, 약제방제시 이류체 포그시스템을 이용하는 것이 악성 노동력 감소, 환경친화성, 생산성 증대 등에 기여하는 방안이 될 것으로 사료된다.