• Title/Summary/Keyword: Human skin model

Search Result 294, Processing Time 0.026 seconds

The Effect of Hydrolyzed Jeju Ulva pertusa on the Proliferation and Type I Collagen Synthesis in Replicative Senescent Fibroblasts (제주 구멍갈파래 가수분해물에 의한 노화된 섬유아세포 증식 및 콜라겐 합성증진 효과)

  • Ko, Hyun Ju;Kim, Gyoung Bum;Lee, Dong Hwan;Lee, Geun Soo;Pyo, Hyeong Bae
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.3
    • /
    • pp.177-186
    • /
    • 2013
  • Skin dermal fibroblast is the major collagen-producing cell type in human skin. As aging process continues in human skin, collagen production is reduced and fragmentation is increased, which is initiated by matrix metalloproteinase-1 (MMP-1). This imbalance of collagen homeostasis impairs the structure and function of dermal collagenous extracellular matrix (ECM), thereby promoting skin aging. Cysteine-rich protein 61 (CCN1), a member of the CCN family, negatively regulates collagen homeostasis in primary human skin dermal fibroblast cells. It is known in aging fibroblast cells that elevated CCN1 expression substantially reduces type I procollagen and concurrently increases MMP-1, which initiates fibrillar collagen degradation. And proliferation rate of aging fibroblast cells is reduced compared to the pre-aging fibroblast cells. In this study, we confirmed that the replicative senescence dermal fibroblast cells increased the expression levels of MMP-1 and decreased the production of type I procollagen. Our results also showed that the replicative senescence dermal fibroblast cells increased in the expression of CCN1 and decreased in the proliferation rate. Hydrolyzed Ulva pertusa extracts are the materials to improve photo-aging by reducing the expression of MMP-1 that was increased by ultraviolet and by promoting the synthesis of new collagen from fibroblast cells. In this study, we also investigated the hydrolyzed U. pertusa extract to see whether it inhibits CCN1 protein expression in the senescence fibroblasts. Results showed that the hydrolyzed U. pertusa extract inhibited the expression of MMP-1 and increased the production of type I procollagen in the aging skin fibroblast cells cultured. In addition, the proteins that regulate collagen homeostasis CCN1 expression were greatly reduced. The hydrolyzed U. pertusa extract increased the proliferation rate of the aging fibroblast cells. These results suggest that replicative senescent fibroblast cells may be used in the study of cosmetic ingredients as a model of the natural aging. In conclusion, the hydrolyzed U. pertusa extract can be used in anti-wrinkle functional cosmetic material to improve the natural aging skin care as well as photo-aging.

A Study on Hand Gesture Recognition with Low-Resolution Hand Images (저해상도 손 제스처 영상 인식에 대한 연구)

  • Ahn, Jung-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.1
    • /
    • pp.57-64
    • /
    • 2014
  • Recently, many human-friendly communication methods have been studied for human-machine interface(HMI) without using any physical devices. One of them is the vision-based gesture recognition that this paper deals with. In this paper, we define some gestures for interaction with objects in a predefined virtual world, and propose an efficient method to recognize them. For preprocessing, we detect and track the both hands, and extract their silhouettes from the low-resolution hand images captured by a webcam. We modeled skin color by two Gaussian distributions in RGB color space and use blob-matching method to detect and track the hands. Applying the foodfill algorithm we extracted hand silhouettes and recognize the hand shapes of Thumb-Up, Palm and Cross by detecting and analyzing their modes. Then, with analyzing the context of hand movement, we recognized five predefined one-hand or both-hand gestures. Assuming that one main user shows up for accurate hand detection, the proposed gesture recognition method has been proved its efficiency and accuracy in many real-time demos.

Extracellular Vesicles from Korean Codium fragile and Sargassum fusiforme Negatively Regulate Melanin Synthesis

  • Jang, Bohee;Chung, Heesung;Jung, Hyejung;Song, Hyun-Kuk;Park, Eunhye;Choi, Hack Sun;Jung, Kyuhyun;Choe, Han;Yang, Sanghwa;Oh, Eok-Soo
    • Molecules and Cells
    • /
    • v.44 no.10
    • /
    • pp.736-745
    • /
    • 2021
  • Although various marine ingredients have been exploited for the development of cosmetic products, no previous study has examined the potential of seaweed extracellular vesicles (EV) in such applications. Our results revealed that EV from Codium fragile and Sargassum fusiforme effectively decreased α-MSH-mediated melanin synthesis in MNT-1 human melanoma cells, associated with downregulation of MITF (microphthalmia-associated transcription factor), tyrosinase and TRP1 (tyrosinase-related proteins 1). The most effective inhibitory concentrations of EV were 250 ㎍/ml for S. fusiforme and 25 ㎍/ml for C. fragile, without affecting the viability of MNT-1 cells. Both EV reduced melanin synthesis in the epidermal basal layer of a three-dimensional model of human epidermis. Moreover, the application of the prototype cream containing C. fragile EV (final 5 ㎍/ml) yielded 1.31% improvement in skin brightness in a clinical trial. Together, these results suggest that EV from C. fragile and S. fusiforme reduce melanin synthesis and may be potential therapeutic and/or supplementary whitening agents.

COMPARISON OF THE BIOMECHANICAL AND BIOSYNTHETIC BEHAVIOR OF NORMAL HUMAN FIBROBLASTS AND FIBROBLASTS ISSUE FROM A FOREHEAD WRINKLE

  • Jouandeaud, M.;Viennet, C.;Chadebec, P.;Bordes, S.;Closs, B.;Humbert, P.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09a
    • /
    • pp.192-202
    • /
    • 2003
  • The wrinkles correspond to the most obvious expression of skin ageing and are manifested by changes on the organization and dermal structure. In the extracellular matrix, decreased quantities of collagens and glycosaminoglycans as well as a deterioration of the fibrillary network is noted, result in a reduction of dermal thickness. In addition, the activity of the collagenases increases in contrast to the synthesis of collagen fibers. Nor are cells spared during the aging process. We thus studied and compared the contractile capacity as well as the synthesis capacity of normal human fibroblasts and human fibroblasts obtained from biopsies of forehead wrinkles. The capacity of the fibroblasts to be adhered to the collagen network and to maintain a three-dimensional structure of dermis was studied on a model of equivalent dermis. The metabolic activity was studied by evaluating the capacities of synthesis of collagen I, main component of dermis. Human fibroblasts resulting from the forehead wrinkle contract less the gel of collagen than the normal human fibroblasts and present an activity of biosynthesis of collagen I less important than normal human fibroblasts. These results show that fibroblasts with aging present a deceleration of their metabolic activity and lose their capacity of adhesion to collagen fibers thus limiting the possibility of organizing the dermal tissue. We investigated the potential of an active ingredient able to compensate for the reduction of the metabolic activity and to restore the contractile capacity of fibroblasts obtained from forehead wrinkles. This effect was compared with a reference molecule: the vitamin C.

  • PDF

Production and Usage of Korean Human Information in KISTI (KISTI에 있어서 한국인 인체정보의 생산과 활용)

  • Lee, Sang-Ho;Lee, Seung-Bock
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.5
    • /
    • pp.416-421
    • /
    • 2010
  • The KISTI (Korea Institute of Science and Technology Information) began to produce the Korean human information called Visible Korean and Digital Korean since 2000 because there was no human information in Korea which could represent the physical characteristics of Korean human body. The Visible Korean consists of CT, MR, sectioned and segmented images of Korean human body. We obtained the serially sectioned images by grinding the Korean cadaver in horizontal direction and segmented these images by outlining the inner organs of human. We have produced the sectioned images of Korean male whole body, male head, and female pelvis in2008. The segmentation and 3D reconstruction of these images are now in proceeding. The Digital Korean consists of CT images of about 100 Korean cadavers. These CT images were segmented by individual bone, reconstructed to produce the 3D bone models and the skin surface model was also added. The mechanical properties of individual bones were obtained by measuring the property of individual bone sample. We have distributed these Korean human informations to users in domestic and abroad. About 70 institutes in domestic, and 20 institutes in abroad have used our data in research use and nearly 160 proceedings and articles were published since 2001. We think these human informations have a role of medical information infrastructure that could be used in the field of medical education, biomechanics, virtual reality etc.

A Study of Fiber-Reinforced Material Models for the Mechanical Characteristics of Human Annulus Fibrosus (인체의 윤상인대의 역학적 특성 모사를 위한 섬유 강화 모델에 관한 연구)

  • Lim, Jun-Taek;Choi, Deok-Kee
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.619-628
    • /
    • 2011
  • Human soft tissues, including muscles, ligaments, skin, and blood vessels, are an interesting subject because damage to them can be observed in everyday life. Besides the lack of available experimental data and the large deformation upon loading, the anisotropic and compressible nature of annulus fibrosus makes it more difficult to find a simple material model. A fiber-reinforced hyperelastic material model is used to determine the stress-strain curves upon uniaxial loading. The energy potential function for annulus fibrosus is composed of three different parts: matrix, fibers, and matrix-fiber interaction, which accounts for the angles between two families of fibers. In this paper, two different types of energy potential function for the matrix are considered, and are inserted into the fiber-reinforced model. The calculated results are compared with the Neo-Hookean model and experimental data, and reasonable agreement is observed overall.

The Use of Hyalomatrix$^{(R)}$ in the Treatment of Difficult To Heal Wound (치료하기 어려운 창상에서 하이알로매트릭스$^{(R)}$의 사용)

  • Koo, Hyun-Kook;Kim, Young-Seok;Hong, Jong-Won;Roh, Tai-Suk;Rah, Dong-Kwun
    • Archives of Plastic Surgery
    • /
    • v.37 no.5
    • /
    • pp.600-606
    • /
    • 2010
  • Purpose: Although traditional and current treatment strategies may demonstrate success, persistence or recurrence of difficult-to-heal wounds remain significant problems. A novel product, Hyalomatrix$^{(R)}$ (Fidia Advanced Biopolymer, Abano Terme, Italy) is a bilayer of an benzyl esterified hyaluronan scaffold beneath a silicone membrane. The scaffold delivers hyaluronan to the wound, and the silicone membrane acts as a temporary epidermal barrier. We present the results obtained with Hyalomatrix$^{(R)}$ in the treatment of difficult-to-heal wounds. Methods: From November, 2008 to March, 2010, Hyalomatrix$^{(R)}$ has been used on total 10 patients with wounds that were expected difficult to heal with traditional and other current strategies. After average 37.4 days from development of wounds, Hyalomatrix$^{(R)}$ was applied after wound debridement. On the average, Hyalomatrix$^{(R)}$ application period was 17.6 days. After average 16.5 days from removal of Hyalomatrix$^{(R)}$, skin grafts was performed. Results: In all cases, regeneration of fibrous granulation tissues and edge re-epithelization were present after the application of the Hyalomatrix$^{(R)}$. And all of the previous inflammatory signs were reduced. After skin grafts, no adverse reactions were recorded in 9 cases. But in one case, postoperative wound infection occured due to a lack of efficient fibrous tissues. In this model, the Hyalomatrix$^{(R)}$ acts as a hyaluronan delivery system and a barrier from the external environments. In tissue repair processes, the hyaluronan performs to facilitate the entry of a large number of cells into the wounds, to orientate the deposition of extracellular matrix fibrous components and to change the microenvironment of difficult-to-heal wounds. Conclusion: Our study suggests that Hyalomatrix$^{(R)}$ could be a good and feasible approach for difficult-to-heal wounds. The Hyalomatrix$^{(R)}$ improves microenvironments of difficult-to-heal wounds, reduces infection rates and physical stimulus despite of aggravating factors.

Comparative Modeling of Human Tyrosinase - an Important Target for Developing Skin Whitening Agents (피부 미백제의 타겟 단백질인 인간 티로시나제의 3차원 구조 상동 모델링)

  • Choi, Jongkeun;Suh, Joo Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.11
    • /
    • pp.5350-5355
    • /
    • 2012
  • Human tyrosinase (hTyr) catalyzes the first and rate limiting step in the biosynthesis of a skin color determinant, melanin. Although a number of cosmetic companies have tried to develop hTyr inhibitors for several decades, absence of 3D structure of hTyr make it impossible to design or screen inhibitors by structure-based approach. Therefore, we built a 3D structure by comparative modeling technique based on the crystal structure of tyrosinase from Bacillus megaterium to provide structural information and to search new hit compounds from database. Our model revealed that two copper atoms of active site located deep inside and were coordinated with six strictly conserved histidine residues coming from four-helix-bundle. Substrate binding site had narrow funnel like shape and its entrance was wide and exposed to solvent. In addition, hTyr-tyrosine and hTyr-kojic acid, a well-known inhibitor, complexes were modeled with the guide of solvent accessible surface generated by in-house software. Our model demonstrated that only phenol group or its analogs could fill the binding site near the nuclear copper center, because inside of binding site had narrow shape relatively. In conclusion, the results of this study may provide helpful information for designing and screening new anti-melanogenic agents.

Effects of Herbal Medicine Complex on Skin Inflammation and Atopic Dermatitis (한방 복합물이 피부 염증 및 아토피 피부염에 미치는 영향)

  • Ji-Hee, Choi;In-Hwan, Joo;Jong-Min, Park;Dong-Hee, Kim
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.36 no.5
    • /
    • pp.187-192
    • /
    • 2022
  • The purpose of this study is to examine the effect of herbal medicine complex (HMC) containing Camellia sinensis L., Duchoesna chrysantha, Houttuynia cordata Thunberg, Poncirus trifoliata Rafinesque on skin inflammation and atopic dermatitis. First, we examined the anti-inflammatory effect of HMC in TNF-α induced human keratinocytes (HaCaT cell). Real-time PCR and western blotting were performed to evaluate the expression of inflammatory cytokines (e.g., iNOS, COX-2, IL-6, IL-8) mRNA and protein. Four-weeks old male NC/Nga mice were treated with 1% 2,4-dinitrochlorobenzene (DNCB) solution and used as an atopic dermatitis mice model. And, HMC (200 mg/kg or 400 mg/kg) was administered directly into the stomach of mice for 4 weeks, and blood or serum analysis, tissue staining were performed after oral gavage. As a result HMC inhibited the mRNA expression of iNOS, COX-2, IL-6, and IL-8, which had been increased by TNF-α in HaCaT cells. In addition, the protein expression was also significantly suppressed in the same way as the mRNA expression results. The in vivo experiment results showed that, HMC administration reduced thickening of the epidermis and infiltration of eosinophil into the skin stratum basale compared to DNCB treatment. In addition, HMC administration significantly reduced the inflammatory cytokines (IL-4, IL-5, IL-6, and IL-13) production and immunocyte (white blood cell, lymphocyte, neutrophil, and eosinophil) count compared to DNCB treatment. Moreover, the serum IgE and histamine level was decreased by HMC administration. These results suggest that HMC can be used as effective herbal medicine extract for skin inflammation and atopic dermatitis. And this study may contribute to the development of the herbal medicine-based drug for the treatment of skin inflammation and atopic dermatitis.

Protective Effect of Betula Platyphylla on Ultraviolet B-irradiated HaCaT Keratinocytes (화피(樺皮) 에탄올 추출물의 Ultraviolet B로 자극한 피부 각질 세포 보호 작용)

  • Hag Soon Choi;Hyun Joo Kim;Hark Song Lee;Seung Won Paik;Ji Eun Kim;Yung Sun Song
    • The Journal of Korean Medicine
    • /
    • v.44 no.2
    • /
    • pp.119-131
    • /
    • 2023
  • Objectives: Betula Platyphylla(BP) has been used as a analgesic, anti-microbial, anti-oxidant drug in Eastern Asia. However, it is still unknown whether BP ethanol extract could exhibit the inhibitory activities against ultraviolet B(UVB)-induced skin injury on human keratinocytes, HaCaT cells. This study was aimed to investigate the protective activity of BP ethanol extract on UVB-irradiated skin injury in HaCaT cells. Methods: The skin injury model of HaCaT cells was established under UVB stimulation. HaCaT keratinocyte cells were pre-treated with BP ethanol extract for 1 h, and then stimulated with UVB. Then, the cells were harvested to measure the cell viability, production of reactive oxygen species(ROS), pro-inflammatory cytokines such as interleukin(IL) 1-beta, IL-6, and tumor necrosis factor(TNF)-𝛼, hyaluronidase, type 1 collagen, matrix metalloproteinase(MMP)s. In addition, we examined the mitogen activated protein kinases(MAPKs) and inhibitory kappa B alpha(I𝜅;-B𝛼) as inhibitory mechanisms of BP ethanol extract. Results: The treatment of BP ethanol extract inhibited the UVBinduced cell death and ROS production in HaCaT cells. BP ethanol extract treatment inhibited the UVB-induced increase of IL-1beta, IL-6, and TNF-𝛼. BP ethanol extract treatment inhibited the increase of hyaluronidase, MMP and decrease of collagen. BP ethanol extract treatment inhibited the activation of MAPKs and the degradation of I𝜅-B𝛼. Conclusions: Our result suggest that treatment of BP ethanol extract could inhibit the UVB-induced skin injury via deactivation of MAPKs and nuclear factor kappa B(NF-𝜅B) in HaCaT cells. This study could suggest that BP ethanol extract could be a beneficial agent to prevent skin damage or inflammation.