Browse > Article
http://dx.doi.org/10.14348/molcells.2021.2167

Extracellular Vesicles from Korean Codium fragile and Sargassum fusiforme Negatively Regulate Melanin Synthesis  

Jang, Bohee (Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University)
Chung, Heesung (Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University)
Jung, Hyejung (Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University)
Song, Hyun-Kuk (Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University)
Park, Eunhye (Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University)
Choi, Hack Sun (Subtropical/Tropical Organism Gene Bank, Jeju National University)
Jung, Kyuhyun (ExoMed, Inc.)
Choe, Han (Department of Physiology, University of Ulsan College of Medicine, Asan Medical Center)
Yang, Sanghwa (ExoMed, Inc.)
Oh, Eok-Soo (Department of Life Sciences, The Research Center for Cellular Homeostasis, Ewha Womans University)
Abstract
Although various marine ingredients have been exploited for the development of cosmetic products, no previous study has examined the potential of seaweed extracellular vesicles (EV) in such applications. Our results revealed that EV from Codium fragile and Sargassum fusiforme effectively decreased α-MSH-mediated melanin synthesis in MNT-1 human melanoma cells, associated with downregulation of MITF (microphthalmia-associated transcription factor), tyrosinase and TRP1 (tyrosinase-related proteins 1). The most effective inhibitory concentrations of EV were 250 ㎍/ml for S. fusiforme and 25 ㎍/ml for C. fragile, without affecting the viability of MNT-1 cells. Both EV reduced melanin synthesis in the epidermal basal layer of a three-dimensional model of human epidermis. Moreover, the application of the prototype cream containing C. fragile EV (final 5 ㎍/ml) yielded 1.31% improvement in skin brightness in a clinical trial. Together, these results suggest that EV from C. fragile and S. fusiforme reduce melanin synthesis and may be potential therapeutic and/or supplementary whitening agents.
Keywords
extracellular vesicles; melanin synthesis; seaweed; skin epidermis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kang, H.S., Kim, H.R., Byun, D.S., Son, B.W., Nam, T.J., and Choi, J.S. (2004). Tyrosinase inhibitors isolated from the edible brown alga Ecklonia stolonifera. Arch. Pharm. Res. 27, 1226-1232.   DOI
2 Gomari, H., Moghadam, M.F., and Soleimani, M. (2018). Targeted cancer therapy using engineered extracellular vesicle as a natural drug delivery vehicle. Onco Targets Ther. 11, 5753-5762.   DOI
3 Draelos, Z.D. (2007). Skin lightening preparations and the hydroquinone controversy. Dermatol. Ther. 20, 308-313.   DOI
4 Hedley, S.J., Gawkrodger, D.J., Weetman, A.P., and Macneil, S. (1998). alpha-MSH and melanogenesis in normal human adult melanocytes. Pigment Cell Res. 11, 45-56.   DOI
5 Hu, S., Li, Z., Cores, J., Huang, K., Su, T., Dinh, P.U., and Cheng, K. (2019). Needle-free injection of exosomes derived from human dermal fibroblast spheroids ameliorates skin photoaging. ACS Nano 13, 11273-11282.   DOI
6 Parvez, S., Kang, M., Chung, H.S., Cho, C., Hong, M.C., Shin, M.K., and Bae, H. (2006). Survey and mechanism of skin depigmenting and lightening agents. Phytother. Res. 20, 921-934.   DOI
7 Ko, R.K., Kang, M.C., Kim, S.S., Oh, T.H., Kim, G.O., Hyun, C.G., Hyun, J.W., and Lee, N.H. (2013). Anti-melanogenesis constituents from the seaweed Dictyota coriacea. Nat. Prod. Commun. 8, 427-428.
8 Kwon, C., Lee, J.H., and Yun, H.S. (2020). SNAREs in plant biotic and abiotic stress responses. Mol. Cells 43, 501-508.   DOI
9 Lane, R.E., Korbie, D., Anderson, W., Vaidyanathan, R., and Trau, M. (2015). Analysis of exosome purification methods using a model liposome system and tunable-resistive pulse sensing. Sci. Rep. 5, 7639.   DOI
10 Nicolaidou, E. and Katsambas, A.D. (2014). Pigmentation disorders: hyperpigmentation and hypopigmentation. Clin. Dermatol. 32, 66-72.   DOI
11 Shilabin, A.G. and Hamann, M.T. (2011). In vitro and in vivo evaluation of select kahalalide F analogs with antitumor and antifungal activities. Bioorg. Med. Chem. 19, 6628-6632   DOI
12 Solano, F., Briganti, S., Picardo, M., and Ghanem, G. (2006). Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Res. 19, 550-571.   DOI
13 Venkatesan, J., Anil, S., Kim, S.K., and Shim, M. (2016). Seaweed polysaccharide-based nanoparticles: preparation, and applications for drug delivery. Polymers (Basel) 8, 30.   DOI
14 Hearing, V.J. (2011). Determination of melanin synthetic pathways. J. Invest. Dermatol. 131(E1), E8-E11.   DOI
15 Azmi, A.S., Bao, B., and Sarkar, F.H. (2013). Exosomes in cancer development, metastasis, and drug resistance: a comprehensive review. Cancer Metastasis Rev. 32, 623-642.   DOI
16 Baroni, A., Buommino, E., De Gregorio, V., Ruocco, E., Ruocco, V., and Wolf, R. (2012). Structure and function of the epidermis related to barrier properties. Clin. Dermatol. 30, 257-262.   DOI
17 Cha, S.H., Ko, S.C., Kim, D., and Jeon, Y.J. (2011). Screening of marine algae for potential tyrosinase inhibitor: those inhibitors reduced tyrosinase activity and melanin synthesis in zebra fish. J. Dermatol. 38, 354-363.   DOI
18 Cunha, L. and Grenha, A. (2016). Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar. Drugs 14, 42.   DOI
19 Dores, R.M. and Baron, A.J. (2011). Evolution of POMC: origin, phylogeny, posttranslational processing, and the melanocortins. Ann. N. Y. Acad. Sci. 1220, 34-48.   DOI
20 Naval, P. and Chandra, T.S. (2019). Characterization of membrane vesicles secreted by seaweed associated bacterium Alteromonas macleodii KS62. Biochem. Biophys. Res. Commun. 514, 422-427.   DOI
21 Oh, M., Lee, J., Kim, Y., Rhee, W., and Park, J. (2018). Exosomes derived from human induced pluripotent stem cells ameliorate the aging of skin fibroblasts. Int. J. Mol. Sci. 19, 1715   DOI
22 Park, J., Jung, H., Kim, K., Lim, K.M., Kim, J.Y., Jho, E.H., and Oh, E.S. (2018). D-tyrosine negatively regulates melanin synthesis by competitively inhibiting tyrosinase activity. Pigment Cell Melanoma Res. 31, 374-383.   DOI
23 Brenner, M. and Hearing, V.J. (2008). The protective role of melanin against UV damage in human skin. Photochem. Photobiol. 84, 539-549.   DOI
24 Valadi, H., Ekstrom, K., Bossios, A., Sjostrand, M., Lee, J.J., and Lotvall, J.O. (2007). Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9, 654-659.   DOI
25 Pillaiyar, T., Manickam, M., and Namasivayam, V. (2017). Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors. J. Enzyme Inhib. Med. Chem. 32, 403-425.   DOI
26 Saraswati, Giriwono, P.E., Iskandriati, D., Tan, C.P., and Andarwulan, N. (2019). Sargassum seaweed as a source of anti-inflammatory substances and the potential insight of the tropical species: a review. Mar. Drugs 17, 590.   DOI
27 Spinola, V., Mendes, B., Camara, J.S., and Castilho, P.C. (2013). Effect of time and temperature on vitamin C stability in horticultural extracts. UHPLC-PDA vs. iodometric titration as analytical methods. Lebensm. Wiss. Technol. 50, 489-495.   DOI
28 Yoon, N.Y., Eom, T.K., Kim, M.M., and Kim, S.K. (2009). Inhibitory effect of phlorotannins isolated from Ecklonia cava on mushroom tyrosinase activity and melanin formation in mouse B16F10 melanoma cells. J. Agric. Food Chem. 57, 4124-4129.   DOI
29 Ferreira, J., Ramos, A.A., Almeida, T., Azqueta, A., and Rocha, E. (2018). Drug resistance in glioblastoma and cytotoxicity of seaweed compounds, alone and in combination with anticancer drugs: a mini review. Phytomedicine 48, 84-93.   DOI
30 Fujimoto, N., Onodera, H., Mitsumori, K., Tamura, T., Maruyama, S., and Ito, A. (1999). Changes in thyroid function during development of thyroid hyperplasia induced by kojic acid in F344 rats. Carcinogenesis 20, 1567-1571.   DOI
31 van den Boorn, J.G., Picavet, D.I., van Swieten, P.F., van Veen, H.A., Konijnenberg, D., van Veelen, P.A., van Capel, T., de Jong, E.C., Reits, E.A., Drijfhout, J.W., et al. (2011). Skin-depigmenting agent monobenzone induces potent T-cell autoimmunity toward pigmented cells by tyrosinase haptenation and melanosome autophagy. J. Invest. Dermatol. 131, 1240-1251.   DOI
32 Jung, H., Chung, H., Chang, S.E., Choi, S., Han, I.O., Kang, D.H., and Oh, E.S. (2014). Syndecan-2 regulates melanin synthesis via protein kinase C betaII-mediated tyrosinase activation. Pigment Cell Melanoma Res. 27, 387-397.   DOI
33 Antimisiaris, S.G., Mourtas, S., and Marazioti, A. (2018). A exosomes and exosome-inspired vesicles for targeted drug delivery. Pharmaceutics 10, 218.   DOI
34 Archambault, M., Yaar, M., and Gilchrest, B.A. (1995). Keratinocytes and fibroblasts in a human skin equivalent model enhance melanocyte survival and melanin synthesis after ultraviolet irradiation. J. Invest. Dermatol. 104, 859-867.   DOI
35 Arulmozhi, V., Pandian, K., and Mirunalini, S. (2013). Ellagic acid encapsulated chitosan nanoparticles for drug delivery system in human oral cancer cell line (KB). Colloids Surf. B Biointerfaces 110, 313-320.   DOI
36 Bastonini, E., Kovacs, D., and Picardo, M. (2016). Skin pigmentation and pigmentary disorders: focus on epidermal/dermal cross-talk. Ann. Dermatol. 28, 279-289.   DOI
37 Chan, Y.Y., Kim, K.H., and Cheah, S.H. (2011). Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells. J. Ethnopharmacol. 137, 1183-1188.   DOI
38 Zhou, H., Kepa, J.K., Siegel, D., Miura, S., Hiraki, Y., and Ross, D. (2009). Benzene metabolite hydroquinone up-regulates chondromodulin-I and inhibits tube formation in human bone marrow endothelial cells. Mol. Pharmacol. 76, 579-587.   DOI
39 Kim, N.H., Choi, S.H., Kim, C.H., Lee, C.H., Lee, T.R., and Lee, A.Y. (2014). Reduced MiR-675 in exosome in H19 RNA-related melanogenesis via MITF as a direct target. J. Invest. Dermatol. 134, 1075-1082.   DOI
40 Jin, Y., Kim, J.H., Hong, H.D., Kwon, J., Lee, E.J., Jang, M., Lee, S.Y., Han, A.R., Nam, T.G., Hong, S.K., et al. (2018). Ginsenosides Rg5 and Rk1, the skin-whitening agents in black ginseng. J. Funct. Foods 45, 67-74.   DOI
41 Jung, H., Chung, H., Chang, S.E., Kang, D.H., and Oh, E.S. (2016). FK506 regulates pigmentation by maturing the melanosome and facilitating their transfer to keratinocytes. Pigment Cell Melanoma Res. 29, 199-209   DOI
42 Kahan, V., Andersen, M.L., Tomimori, J., and Tufik, S. (2009). Stress, immunity and skin collagen integrity: evidence from animal models and clinical conditions. Brain Behav. Immun. 23, 1089-1095.   DOI