• Title/Summary/Keyword: Human neuroblastoma cells

Search Result 154, Processing Time 0.032 seconds

Protective Effects of Radix Polygalae on Dopamine-induced Cell Death in Human SH-SY5Y Dopaminergic Neuroblastoma Cells (도파민 유도성 SH-SY5Y 세포독성에 대한 원지의 방어기전 연구)

  • Lee Ji Yong;Park Jae Hyeon;Kim Kyung Yeol;Kim Tae Heon;Kang Hyung Won;Lyu Young Su
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.18 no.2
    • /
    • pp.544-552
    • /
    • 2004
  • In oriental medicine, Radix Polygalae(RP) has been to treat tremors et al. But the mechanism how to decrease tremors was not known. The purpose of this study was to investigate the effect of RP on neurodegenerative disease. We used RP to execute the study of this defense mechanism on dopamine-induced cell death in human SH-SY5Y dopaminergic neuroblastoma cells. MTT assay was used to know the cytotoxicity of dopamine and the defense mechanism. As a result of this experiment, dopamine had cytotoxicity in human SH-SY5Y cells, but when it treated with RP, the cell survival rate increased. This suppressed the cell apoptosis, activation of caspase-3 protease, production of ROS, and repair of membrane potential change. In conclusion, RP has the protective effect on dopamine-induced cell death in human SH-SY5Y dopaminergic neuroblastoma cells, so this could be an effective agent on the neurodegenerative disease like Parkinsonism.

Effects of DNA Synthesis Inhibitors on the Expression of c-myc and the Stimulation of Choline Acetyltransferase Activity in Human Neuroblastoma Cell Line, IMR-32 (DNA합성 억제제가 IMR-32 세포의 c-myc 발현 및 Choline Acetyltransferase 활성도에 미치는 영향)

  • 이정은;조경혜
    • Biomedical Science Letters
    • /
    • v.3 no.1
    • /
    • pp.11-20
    • /
    • 1997
  • A regulation of differentiation in human neuroblastoma cells remains poorly understood, although it is of great importance in the clinical therapy of neuroblastoma. This study was aimed to elucidate effects of DNA synthesis inhibitors on the differentiation of neuroblastoma cells on the basis of morphological, biochemical and molecular respects. Three DNA synthesis inhibitors, sodium butyrate, hydroxyurea, cytosine arabinoside were used to explore their effects on the cellular morphology, the expression of c-myc and the elevation of choline acetyltransferase activity. They led to the extension or neurite-like processes reflecting differentiation or IMR-32 cells. In addition, the treatment of three DNA synthesis inhibitors resulted in the remarkable increases in the expression of c-myc as well as the stimulation of choline acetyltransferase activity which is involved in the synthesis of acetylcholine in the differentiated cholinergic neurons. Taken together, these results indicate that DNA synthesis inhibitors play an important role in the induction of cellular differentiation in IMR-32 cells. Furthermore these DNA synthesis inhibitors seem to be future useful to give an important clue (for the treatment of neuroblastoma).

  • PDF

Angelica polymorpha Maxim Induces Apoptosis of Human SH-SY5Y Neuroblastoma Cells by Regulating an Intrinsic Caspase Pathway

  • Rahman, Md. Ataur;Bishayee, Kausik;Huh, Sung-Oh
    • Molecules and Cells
    • /
    • v.39 no.2
    • /
    • pp.119-128
    • /
    • 2016
  • Angelica polymorpha Maxim root extract (APRE) is a popular herbal medicine used for treating stomachache, abdominal pain, stomach ulcers, and rheumatism; however the effect of APRE on cancer cells has not yet been explored. Here, we examined APRE cytotoxicity seen on target neuroblastoma cells (NB) using cell viability assays, DAPI visualization of fragmented DNA, and Western blotting analysis of candidate signaling pathways involved in proliferation and apoptosis. We demonstrated that APRE reduced cell viability in NB to a greater extent than in fibroblast cells. In addition, we found that APRE could inhibit the three classes of MAPK proteins and could also down-regulate the PI3K/AKT/GSK-$3{\beta}$ activity all being relevant for proliferation and survival. APRE could also up-regulate Bax expression and down-regulate Bcl-2 and Mcl-1. With APRE treatment, depolarization of mitochondria membrane potential and activation of caspase-3 was demonstrated in the SH-SY5Y cells. We could not found increased activity of death receptor and caspase-8 as markers of the extrinsic apoptosis pathway for the APRE treated cells. In presence of a caspase-3 siRNA and a pan-caspase inhibitor, APRE could not reduce the viability of NB cells to a significant degree. So we predicted that with APRE, the intrinsic pathway was solely responsible for inducing apoptosis as we also showed that the non-caspase autophagy pathway or ER stress-ROS mediated pathways were not involved. These findings demonstrate that an intrinsic mitochondria-mediated apoptosis pathway mediates the apoptotic effects of APRE on SH-SY5Y cells, and that APRE shows promise as a novel agent for neuroblastoma therapy.

Effects of LED irradiation on the expression of apoptosis-related molecules in human SH-SY5Y neuroblastoma cells

  • Cho, Kyu-Seung;Ryu, Sun-Youl;Choi, Hong-Ran
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.33 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • To verify the inhibitory or protective effects of light-emitting diode(LED) irradiation on apoptotic cell death induced by $CoCl_2$, human SH-SY5Y cells were treated with $CoCl_2$ and LED were used to irradiate the cells. In the cell viability assay, cells were died slowly from $50{\mu}M$ to $250{\mu}M$ and about 50% of cells died after 12 hours at $400{\mu}M$ of $CoCl_2$. The Diff-Quik staining revealed that cells showed condensation of DNA and blebbing of the cell membrane. The DNA fragmentation assay revealed the DNA fragmentation, which is another apoptosis marker, occurred in cells treated with $400{\mu}M$ $CoCl_2$ for 16 hours. In the western blot for HIF-$1{\alpha}$, HIF-$1{\alpha}$ was expressed after 3 hours from induction and peaked maximally at 16 hours. In the cell viability assay of the effects of LED irradiation (at 590 nm for 1 hour 20 minutes), the cells showed more proliferation (about 20%) than the control group. The RPA assay of various apoptosis-related molecules showed that pro-apoptosis molecules such as Bax, Bak, and Bid were upregulated in the $CoCl_2$ treatment group. This means that the apoptotic cell population was increased. However there was some significant changes in LED irradiated cells. In the $CoCl_2$-treated LED irradiation group, those molecules were down-regulated more than in the only $CoCl_2$-treated group. These results have shown that $CoCl_2$ may induce apoptotic cell death in human SH-SY5Y neuroblastoma cells. And LED irradiation has a positive effect on apoptotic cells by down-regulation of pro-apoptotic molecules.

Valproic Acid Induces Transcriptional Activation of Human GD3 Synthase (hST8Sia I) in SK-N-BE(2)-C Human Neuroblastoma Cells

  • Kwon, Haw-Young;Dae, Hyun-Mi;Song, Na-Ri;Kim, Kyoung-Sook;Kim, Cheorl-Ho;Lee, Young-Choon
    • Molecules and Cells
    • /
    • v.27 no.1
    • /
    • pp.113-118
    • /
    • 2009
  • In this study, we have shown the transcriptional regulation of the human GD3 synthase (hST8Sia I) induced by valproic acid (VPA) in human neuroblastoma SK-N-BE(2)-C cells. To elucidate the mechanism underlying the regulation of hST8Sia I gene expression in VPA-stimulated SK-N-BE(2)-C cells, we characterized the promoter region of the hST8Sia I gene. Functional analysis of the 5'-flanking region of the hST8Sia I gene by the transient expression method showed that the -1146 to -646 region, which contains putative binding sites for transcription factors c-Ets-1, CREB, AP-1 and NF-${\kappa}B$, functions as the VPA-inducible promoter of hST8Sia I in SK-N-BE(2)-C cells. Site-directed mutagenesis and electrophoretic mobility shift assay indicated that the NF-${\kappa}B$ binding site at -731 to -722 was crucial for the VPA-induced expression of hST8Sia I in SK-N-BE(2)-C cells. In addition, the transcriptional activity of hST8Sia I induced by VPA in SK-N-BE(2)-C cells was strongly inhibited by SP600125, which is a c-Jun N-terminal kinase (JNK) inhibitor, and $G{\ddot{O}}6976$, which is a protein kinase C (PKC) inhibitor, as determined by RT-PCR (reverse transcription-polymerase chain reaction) and luciferase assays. These results suggest that VPA markedly modulated transcriptional regulation of hST8Sia I gene expression through PKC/JNK signal pathways in SK-N-BE(2)-C cells.

Cytotoxic Activities of Panax ginseng and Euphorbia humifusa in Human Brain Tumor Cells (인삼 비당부와 땅빈대의 뇌암세포 독성작용)

  • Cha, Bae-Cheon;Kim, Jung-Ae;Lee, Yong-Soo
    • Korean Journal of Pharmacognosy
    • /
    • v.27 no.4
    • /
    • pp.350-353
    • /
    • 1996
  • The effects of acid hydrolysis product of Panax ginseng and MeOH extract of Euphorbia humifusa on the growth of human brain tumor cells were evaluated using U-373 MG human astrocytoma and SK-N-MC human neuroblastoma cells as model cellular systems. These plant extracts induced cytotoxicity in both cells in a dose-dependent manner. These cytotoxic effects were significantly inhibited by GSH, an antioxidant, in both cells. BAPTA/AM, an intracellular $Ca^{2+}$ chelator, significantly blocked the cytotoxic effects of these extracts in U-373 cells, but enhanced these effects in SK-N-MC cells. These results suggest that the plant extracts may be a valuable choice for the studies on the treatment of human brain tumors.

  • PDF

Ceramide is Involved in $MPP^+-induced$ Cytotoxicity in Human Neuroblastoma Cells

  • Nam, Eun-Joo;Lee, Hye-Sook;Lee, Young-Jae;Joo, Wan-Seok;Maeng, Sung-Ho;Im, Hye-In;Park, Chan-Woong;Kim, Yong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.6 no.6
    • /
    • pp.281-286
    • /
    • 2002
  • To understand the cytotoxic mechanism of $MPP^+,$ we examined the involvement of ceramide in $MPP^+-induced$ cytotoxicity to human neuroblastoma SH-SY5Y cells. When SH-SY5Y cells were exposed to $MPP^+,\;MPP^+$ induced dose-dependent cytotoxicity accompanied by 2-fold elevation of intracellular ceramide levels in SH-SY5Y cells. Three methods were used to test the hypothesis that the elevated intracellular ceramide is related to $MPP^+-induced$ cytotoxicity: $C_2-ceramide$ was directly applied to cells, sphingomyelinase (SMase) was exogenously added, and oleoylethanolamine (OE) was used to inhibit degradation of ceramide. Furthermore, inhibition of ceramide-activated protein phosphatase (CAPP), the effector of ceramide, using okadaic acid (OA) attenuated cell death but treatment of fumonisin $B_1,$ the ceramide synthase inhibitor, did not alter the cytotoxic effect of $MPP^+.$ Based on these, we suggest that the elevation of intracellular ceramide is one of the important mediators in $MPP^+-induced$ cell death.

Cytoprotective Effects of Docosyl Cafferate against tBHP-Induced Oxidative Stress in SH-SY5Y Human Neuroblastoma Cells

  • Choi, Yong-Jun;Kwak, Eun-Bee;Lee, Jae-Won;Lee, Yong-Suk;Cheong, Il-Young;Lee, Hee-Jae;Kim, Sung-Soo;Kim, Myong-Jo;Kwon, Yong-Soo;Chun, Wan-Joo
    • Biomolecules & Therapeutics
    • /
    • v.19 no.2
    • /
    • pp.195-200
    • /
    • 2011
  • Neuronal cell death is a common characteristic feature of a variety of neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. However, there have been no effective drugs to successfully prevent neuronal death in those diseases. In the present study, docosyl cafferate (DC), a derivative of caffeic acid, was isolated from Rhus verniciflua and its protective effects on tBHP-induced neuronal cell death were examined in SH-SY5Y human neuroblastoma cells. Pretreatment of DC significantly attenuated tBHP-induced neuronal cell death in a concentration-dependent manner. DC also significantly suppressed tBHP-induced caspase-3 activation. In addition, DC restored tBHP-induced depletion of intracellular Bcl-2, an anti-apoptotic member of the Bcl-2 family. Furthermore, DC significantly suppressed tBHP-induced degradation of IKB, which retains $NF-{\kappa}B$ in the cytoplasm, resulting in the suppression of nuclear translocation of $NF-{\kappa}B$ and its subsequent activation. Taken together, the results clearly demonstrate that DC exerts its neuroprotective activity against tBHP-induced oxidative stress through the suppression of nuclear translocation of $NF-{\kappa}B$.