References
- Besbes, S., Massoud, M., Marc, Pocard., and Christian, B. (2015). New dimension in therapeutic targeting of BCL-2 family proteins. Oncotarget 6, 12862-12871. https://doi.org/10.18632/oncotarget.3868
- Bodur, C., and Basaga, H. (2012). Bcl-2 inhibitors: emerging drugs in cancer therapy. Curr Med Chem. 19, 1804-1820. https://doi.org/10.2174/092986712800099839
- Brodeur, G.M. (2003). Neuroblastoma: biological insights into a clinical enigma. Nat. Rev. Cancer 3, 203-216. https://doi.org/10.1038/nrc1014
- Castel, V., Grau, E., Noguera, R., and Martinez, F. (2007). Molecular biology of neuroblastoma. Clin. Transl. Oncol. 9, 478- 483. https://doi.org/10.1007/s12094-007-0091-7
- Estaquier, J., Francois, V., Jean-Luc V., and Bernard, M. (2012). The mitochondrial pathways of apoptosis. Adv. Exp. Med. Biol. 942,157-83. https://doi.org/10.1007/978-94-007-2869-1_7
- Fiandalo, M.V., and Kyprianou, N. (2012). Caspase control: protagonists of cancer cell apoptosis. Exp. Oncol. 34, 165-175
- Flaherty, K.T., Infante, J.R., Daud, A., Gonzalez, R., Kefford, R.F., Sosman, J., Hamid, O., Schuchter, L., Cebon, J., Ibrahim, N., et al. (2012). Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl. J. Med. 367, 1694-1703. https://doi.org/10.1056/NEJMoa1210093
- Hector, S., and Jochen, H.M P. (2009). Apoptosis signaling proteins as prognostic biomarkers in colorectal cancer: a review. Biochim. Biophys. Acta 1795, 117-129.
- Hoye, A.T., Jennifer, E.D., Peter, W., Mitchell, P.F., and Valerian, E.K. (2008). Targeting mitochondria. Acc. Chem. Res. 41, 87-97. https://doi.org/10.1021/ar700135m
- Kwon, Y.H., Bishayee, K., Rahman, A., Hong, J.S., Lim, S.S., and Huh, S.O. (2015). Morus alba accumulates reactive oxygen species to initiate apoptosis via FOXO-caspase 3-dependent pathway in neuroblastoma cells. Mol. Cells 38, 630-637. https://doi.org/10.14348/molcells.2015.0030
- Kroemer, G. (1997). The proto-oncogene Bcl-2 and Its role in regulating apoptosis. Nat. Med. 3, 614-620. https://doi.org/10.1038/nm0697-614
- Maris, J.M., Michael, D.H., Rochelle, B., and Susan, L.C. (2007). Neuroblastoma. Lancet 369, 2106-2120. https://doi.org/10.1016/S0140-6736(07)60983-0
- Maris, J.M., Mosse, Y.P., Bradfield, J.P., Hou, C., Monni, S., Scott, R.H., Asgharzadeh, S., Attiyeh, E.F., Diskin, S.J., Laudenslager, M., et al. (2008). Chromosome 6p22 locus associated with clinically aggressive neuroblastoma. N Engl. J. Med. 358, 2585- 2593. https://doi.org/10.1056/NEJMoa0708698
- Nascimento, Pde S., Ornellas, A. A., Campos M. M., Scheiner, M.A., Fiedler, W., and Alves, G. (2004). Bax and bcl-2 imbalance and HPB infection in penile tumors and adjacent tissues. Prog Urol. 14, 353-359.
- Pinto, N.R., Applebaum M.A., Volchenboum, S.L., Matthay, K.K., London, W.B., Ambros, P.F., Nakagawara , A., Berthold, F., Schleiermacher, G., Park, J.R., et al. (2015). Advances in risk classification and treatment strategies for neuroblastoma. J. Clin. Oncol. 20, 3008-3017.
- Rahman, Md A., Nam-Ho, Kim., and Sung-Oh, Huh. (2013). Cytotoxic effect of gambogic acid on SH-SY5Y neuroblastoma cells is mediated by intrinsic caspase-dependent signaling pathway. Mol. Cell Biochem. 377, 187-196. https://doi.org/10.1007/s11010-013-1584-z
- Reed, J.C. (1997). Double identity for proteins of the Bcl-2 family. Nature 387, 773-776. https://doi.org/10.1038/42867
- Roy, S., and Nicholson D. W. (2000). Cross-talk in cell death signaling. J. Exp. Med. 192, 21-26. https://doi.org/10.1084/jem.192.8.F21
- Schrey, D., Vaidya, S.J., Levine, D., Pearson, A.D., and Moreno, L. (2015). Additional therapies to improve metastatic response to induction therapy in children with high-risk neuroblastoma. J. Pediatr. Hematol. Oncol. 37, e150-e153. https://doi.org/10.1097/MPH.0000000000000308
- Shah, S.Z., Zhao, D., Khan, S.H., and Yang, L. (2015). Unfolded protein response pathways in neurodegenerative diseases. J. Mol. Neurosci. doi:10.1007/s12031-015-0633-3.
- Shi, X., Chen, X., Li, X., Lan, X., Zhao, C., Liu, S., Huang, H., Liu, N., Liao, S., Song, W., et al. (2014). Gambogic acid induces apoptosis in imatinib-resistant chronic myeloid leukemia cells via inducing proteasome inhibition and caspase-dependent Bcr-Abl downregulation. Clin. Cancer Res. 20, 151-163. https://doi.org/10.1158/1078-0432.CCR-13-1063
- Sonawane, P., Cho, H.E., Tagde, A., Verlekar, D., Yu, A.L., Reynolds, C.P., and Kang, M.H. (2014). Metabolic characteristics of 13-cis-retinoic acid (isotretinoin) and antitumour activity of the 13-cis-retinoic acid metabolite 4-oxo-13- cis-retinoic acid in neuroblastoma. Br. J. Pharmacol. 171, 5330- 5344. https://doi.org/10.1111/bph.12846
- Takahashi-Yanaga, F., and Sasaguri, T. (2009). Drug development targeting the glycogen synthase kinase-3beta (GSK-3beta)- mediated signal transduction pathway: inhibitors of the Wnt/beta-catenin signaling pathway as novel anticancer drugs. J. Pharmacol. Sci. 109, 179-183. https://doi.org/10.1254/jphs.08R28FM
- Wang, J., Zhu, L., Zou, K., Cheng, F., Dan, F., Guo, Z., Cai, Z., and Yang, J. (2009). The anti-ulcer activities of bisabolangelone from Angelica polymorpha. J. Ethnopharmacol. 123, 343-346. https://doi.org/10.1016/j.jep.2009.02.048
- Yang, Y., Zhang, Y., Ren, F.X., Yu, N.J., Xu, R., and Zhao, Y.M. (2013). Chemical constituents from the roots of Angelica polymorpha Maxim. Yao Xue Xue Bao 48, 718-722.
- Yee, K.S., Wilkinson, S., James, J., Ryan, K.M., and Vousden, K.H. (2009). PUMA- and bax-induced autophagy contributes to apoptosis. Cell Death Differ. 16, 1135-1145. https://doi.org/10.1038/cdd.2009.28
- Zhang, C.L., Wu, L.J., Tashiro, S., Onodera, S., and Ikejima, T. (2004). Oridonin induces apoptosis of HeLa cells via altering expression of Bcl-2/Bax and activating caspase-3/ICAD pathway. Acta Pharmacol. Sin. 25, 691-698.
Cited by
- Molecular mechanisms of apoptosis in hepatocellular carcinoma cells induced by ethanol extracts of Solanum lyratum Thumb through the mitochondrial pathway vol.23, pp.6, 2017, https://doi.org/10.3748/wjg.v23.i6.1010
- Potential Therapeutic Role of Phytochemicals to Mitigate Mitochondrial Dysfunctions in Alzheimer’s Disease vol.10, pp.1, 2016, https://doi.org/10.3390/antiox10010023
- Phytochemicals as a Complement to Cancer Chemotherapy: Pharmacological Modulation of the Autophagy-Apoptosis Pathway vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.639628
- Targeting Autophagy with Natural Compounds in Cancer: A Renewed Perspective from Molecular Mechanisms to Targeted Therapy vol.12, pp.None, 2016, https://doi.org/10.3389/fphar.2021.748149
- Wound Healing-Promoting and Melanogenesis-Inhibiting Activities of Angelica polymorpha Maxim. Flower Absolute In Vitro and Its Chemical Composition vol.26, pp.20, 2021, https://doi.org/10.3390/molecules26206172