DOI QR코드

DOI QR Code

Angelica polymorpha Maxim Induces Apoptosis of Human SH-SY5Y Neuroblastoma Cells by Regulating an Intrinsic Caspase Pathway

  • Rahman, Md. Ataur (Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University) ;
  • Bishayee, Kausik (Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University) ;
  • Huh, Sung-Oh (Department of Pharmacology, College of Medicine, Institute of Natural Medicine, Hallym University)
  • Received : 2015.08.31
  • Accepted : 2015.10.26
  • Published : 2016.02.29

Abstract

Angelica polymorpha Maxim root extract (APRE) is a popular herbal medicine used for treating stomachache, abdominal pain, stomach ulcers, and rheumatism; however the effect of APRE on cancer cells has not yet been explored. Here, we examined APRE cytotoxicity seen on target neuroblastoma cells (NB) using cell viability assays, DAPI visualization of fragmented DNA, and Western blotting analysis of candidate signaling pathways involved in proliferation and apoptosis. We demonstrated that APRE reduced cell viability in NB to a greater extent than in fibroblast cells. In addition, we found that APRE could inhibit the three classes of MAPK proteins and could also down-regulate the PI3K/AKT/GSK-$3{\beta}$ activity all being relevant for proliferation and survival. APRE could also up-regulate Bax expression and down-regulate Bcl-2 and Mcl-1. With APRE treatment, depolarization of mitochondria membrane potential and activation of caspase-3 was demonstrated in the SH-SY5Y cells. We could not found increased activity of death receptor and caspase-8 as markers of the extrinsic apoptosis pathway for the APRE treated cells. In presence of a caspase-3 siRNA and a pan-caspase inhibitor, APRE could not reduce the viability of NB cells to a significant degree. So we predicted that with APRE, the intrinsic pathway was solely responsible for inducing apoptosis as we also showed that the non-caspase autophagy pathway or ER stress-ROS mediated pathways were not involved. These findings demonstrate that an intrinsic mitochondria-mediated apoptosis pathway mediates the apoptotic effects of APRE on SH-SY5Y cells, and that APRE shows promise as a novel agent for neuroblastoma therapy.

Keywords

References

  1. Besbes, S., Massoud, M., Marc, Pocard., and Christian, B. (2015). New dimension in therapeutic targeting of BCL-2 family proteins. Oncotarget 6, 12862-12871. https://doi.org/10.18632/oncotarget.3868
  2. Bodur, C., and Basaga, H. (2012). Bcl-2 inhibitors: emerging drugs in cancer therapy. Curr Med Chem. 19, 1804-1820. https://doi.org/10.2174/092986712800099839
  3. Brodeur, G.M. (2003). Neuroblastoma: biological insights into a clinical enigma. Nat. Rev. Cancer 3, 203-216. https://doi.org/10.1038/nrc1014
  4. Castel, V., Grau, E., Noguera, R., and Martinez, F. (2007). Molecular biology of neuroblastoma. Clin. Transl. Oncol. 9, 478- 483. https://doi.org/10.1007/s12094-007-0091-7
  5. Estaquier, J., Francois, V., Jean-Luc V., and Bernard, M. (2012). The mitochondrial pathways of apoptosis. Adv. Exp. Med. Biol. 942,157-83. https://doi.org/10.1007/978-94-007-2869-1_7
  6. Fiandalo, M.V., and Kyprianou, N. (2012). Caspase control: protagonists of cancer cell apoptosis. Exp. Oncol. 34, 165-175
  7. Flaherty, K.T., Infante, J.R., Daud, A., Gonzalez, R., Kefford, R.F., Sosman, J., Hamid, O., Schuchter, L., Cebon, J., Ibrahim, N., et al. (2012). Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. N Engl. J. Med. 367, 1694-1703. https://doi.org/10.1056/NEJMoa1210093
  8. Hector, S., and Jochen, H.M P. (2009). Apoptosis signaling proteins as prognostic biomarkers in colorectal cancer: a review. Biochim. Biophys. Acta 1795, 117-129.
  9. Hoye, A.T., Jennifer, E.D., Peter, W., Mitchell, P.F., and Valerian, E.K. (2008). Targeting mitochondria. Acc. Chem. Res. 41, 87-97. https://doi.org/10.1021/ar700135m
  10. Kwon, Y.H., Bishayee, K., Rahman, A., Hong, J.S., Lim, S.S., and Huh, S.O. (2015). Morus alba accumulates reactive oxygen species to initiate apoptosis via FOXO-caspase 3-dependent pathway in neuroblastoma cells. Mol. Cells 38, 630-637. https://doi.org/10.14348/molcells.2015.0030
  11. Kroemer, G. (1997). The proto-oncogene Bcl-2 and Its role in regulating apoptosis. Nat. Med. 3, 614-620. https://doi.org/10.1038/nm0697-614
  12. Maris, J.M., Michael, D.H., Rochelle, B., and Susan, L.C. (2007). Neuroblastoma. Lancet 369, 2106-2120. https://doi.org/10.1016/S0140-6736(07)60983-0
  13. Maris, J.M., Mosse, Y.P., Bradfield, J.P., Hou, C., Monni, S., Scott, R.H., Asgharzadeh, S., Attiyeh, E.F., Diskin, S.J., Laudenslager, M., et al. (2008). Chromosome 6p22 locus associated with clinically aggressive neuroblastoma. N Engl. J. Med. 358, 2585- 2593. https://doi.org/10.1056/NEJMoa0708698
  14. Nascimento, Pde S., Ornellas, A. A., Campos M. M., Scheiner, M.A., Fiedler, W., and Alves, G. (2004). Bax and bcl-2 imbalance and HPB infection in penile tumors and adjacent tissues. Prog Urol. 14, 353-359.
  15. Pinto, N.R., Applebaum M.A., Volchenboum, S.L., Matthay, K.K., London, W.B., Ambros, P.F., Nakagawara , A., Berthold, F., Schleiermacher, G., Park, J.R., et al. (2015). Advances in risk classification and treatment strategies for neuroblastoma. J. Clin. Oncol. 20, 3008-3017.
  16. Rahman, Md A., Nam-Ho, Kim., and Sung-Oh, Huh. (2013). Cytotoxic effect of gambogic acid on SH-SY5Y neuroblastoma cells is mediated by intrinsic caspase-dependent signaling pathway. Mol. Cell Biochem. 377, 187-196. https://doi.org/10.1007/s11010-013-1584-z
  17. Reed, J.C. (1997). Double identity for proteins of the Bcl-2 family. Nature 387, 773-776. https://doi.org/10.1038/42867
  18. Roy, S., and Nicholson D. W. (2000). Cross-talk in cell death signaling. J. Exp. Med. 192, 21-26. https://doi.org/10.1084/jem.192.8.F21
  19. Schrey, D., Vaidya, S.J., Levine, D., Pearson, A.D., and Moreno, L. (2015). Additional therapies to improve metastatic response to induction therapy in children with high-risk neuroblastoma. J. Pediatr. Hematol. Oncol. 37, e150-e153. https://doi.org/10.1097/MPH.0000000000000308
  20. Shah, S.Z., Zhao, D., Khan, S.H., and Yang, L. (2015). Unfolded protein response pathways in neurodegenerative diseases. J. Mol. Neurosci. doi:10.1007/s12031-015-0633-3.
  21. Shi, X., Chen, X., Li, X., Lan, X., Zhao, C., Liu, S., Huang, H., Liu, N., Liao, S., Song, W., et al. (2014). Gambogic acid induces apoptosis in imatinib-resistant chronic myeloid leukemia cells via inducing proteasome inhibition and caspase-dependent Bcr-Abl downregulation. Clin. Cancer Res. 20, 151-163. https://doi.org/10.1158/1078-0432.CCR-13-1063
  22. Sonawane, P., Cho, H.E., Tagde, A., Verlekar, D., Yu, A.L., Reynolds, C.P., and Kang, M.H. (2014). Metabolic characteristics of 13-cis-retinoic acid (isotretinoin) and antitumour activity of the 13-cis-retinoic acid metabolite 4-oxo-13- cis-retinoic acid in neuroblastoma. Br. J. Pharmacol. 171, 5330- 5344. https://doi.org/10.1111/bph.12846
  23. Takahashi-Yanaga, F., and Sasaguri, T. (2009). Drug development targeting the glycogen synthase kinase-3beta (GSK-3beta)- mediated signal transduction pathway: inhibitors of the Wnt/beta-catenin signaling pathway as novel anticancer drugs. J. Pharmacol. Sci. 109, 179-183. https://doi.org/10.1254/jphs.08R28FM
  24. Wang, J., Zhu, L., Zou, K., Cheng, F., Dan, F., Guo, Z., Cai, Z., and Yang, J. (2009). The anti-ulcer activities of bisabolangelone from Angelica polymorpha. J. Ethnopharmacol. 123, 343-346. https://doi.org/10.1016/j.jep.2009.02.048
  25. Yang, Y., Zhang, Y., Ren, F.X., Yu, N.J., Xu, R., and Zhao, Y.M. (2013). Chemical constituents from the roots of Angelica polymorpha Maxim. Yao Xue Xue Bao 48, 718-722.
  26. Yee, K.S., Wilkinson, S., James, J., Ryan, K.M., and Vousden, K.H. (2009). PUMA- and bax-induced autophagy contributes to apoptosis. Cell Death Differ. 16, 1135-1145. https://doi.org/10.1038/cdd.2009.28
  27. Zhang, C.L., Wu, L.J., Tashiro, S., Onodera, S., and Ikejima, T. (2004). Oridonin induces apoptosis of HeLa cells via altering expression of Bcl-2/Bax and activating caspase-3/ICAD pathway. Acta Pharmacol. Sin. 25, 691-698.

Cited by

  1. Molecular mechanisms of apoptosis in hepatocellular carcinoma cells induced by ethanol extracts of Solanum lyratum Thumb through the mitochondrial pathway vol.23, pp.6, 2017, https://doi.org/10.3748/wjg.v23.i6.1010
  2. Potential Therapeutic Role of Phytochemicals to Mitigate Mitochondrial Dysfunctions in Alzheimer’s Disease vol.10, pp.1, 2016, https://doi.org/10.3390/antiox10010023
  3. Phytochemicals as a Complement to Cancer Chemotherapy: Pharmacological Modulation of the Autophagy-Apoptosis Pathway vol.12, pp.None, 2021, https://doi.org/10.3389/fphar.2021.639628
  4. Targeting Autophagy with Natural Compounds in Cancer: A Renewed Perspective from Molecular Mechanisms to Targeted Therapy vol.12, pp.None, 2016, https://doi.org/10.3389/fphar.2021.748149
  5. Wound Healing-Promoting and Melanogenesis-Inhibiting Activities of Angelica polymorpha Maxim. Flower Absolute In Vitro and Its Chemical Composition vol.26, pp.20, 2021, https://doi.org/10.3390/molecules26206172