• Title/Summary/Keyword: Human milk oligosaccharide

Search Result 14, Processing Time 0.034 seconds

Human milk oligosaccharides: the novel modulator of intestinal microbiota

  • Jeong, Kyung-Hun;Nguyen, Vi;Kim, Jae-Han
    • BMB Reports
    • /
    • v.45 no.8
    • /
    • pp.433-441
    • /
    • 2012
  • Human milk, which nourishes the early infants, is a source of bioactive components for the infant growth, development and commensal formulation as well. Human milk oligosaccharide is a group of complex and diverse glycans that is apparently not absorbed in human gastrointestinal tract. Although most mammalian milk contains oligosaccharides, oligosaccharides in human milk exhibit unique features in terms of their types, amounts, sizes, and functionalities. In addition to the prevention of infectious bacteria and the development of early immune system, human milk oligosaccharides are able to facilitate the healthy intestinal microbiota. Bifidobacterial intestinal microbiota appears to be established by the unilateral interaction between milk oligosaccharides, human intestinal activity and commensals. Digestibility, membrane transportation and catabolic activity by bacteria and intestinal epithelial cells, all of which are linked to the structural of human milk oligosaccharides, are crucial in determining intestinal microbiota.

Classification, Structure, and Bioactive Functions of Oligosaccharides in Milk

  • Mijan, Mohammad Al;Lee, Yun-Kyung;Kwak, Hae-Soo
    • Food Science of Animal Resources
    • /
    • v.31 no.5
    • /
    • pp.631-640
    • /
    • 2011
  • Milk oligosaccharides are the complex mixture of six monosaccharides namely, D-glucose, D-galactose, N-acetyl-glucosamine, N-acetyl-galactosamine, L-fucose, and N-acetyl-neuraminic acid. The mixture is categorized as neutral and acidic classes. Previously, 25 oligosaccharides in bovine milk and 115 oligosaccharides in human milk have been characterized. Because human intestine lacks the enzyme to hydrolyze the oligosaccharide structures, these substances can reach the colon without degradation and are known to have many health beneficial functions. It has been shown that this fraction of carbohydrate can increase the bifidobacterial population in the intestine and colon, resulting in a significant reduction of pathogenic bacteria. The role of milk oligosaccharides as a barrier against pathogens binding to the cell surface has recently been demonstrated. Milk oligosaccharides have the potential to produce immuno-modulation effects. It is also well known that oligosaccharides in milk have a significant influence on intestinal mineral absorption and in the formation of the brain and central nervous system. Due to its structural resemblance, bovine milk is considered to be the most potential source of oligosaccharides to produce the same effect of oligosaccharides present in human milk. This review describes the characteristics and potential health benefits of milk oligosaccharides as well as the prospects of oligosaccharides in bovine milk for use in functional foods.

Genome of Bifidobacteria and Carbohydrate Metabolism

  • Bondue, Pauline;Delcenserie, Veronique
    • Food Science of Animal Resources
    • /
    • v.35 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • In recent years, the knowledge about bifidobacteria has considerably evolved thanks to recent progress in molecular biology. The analysis of the whole genome sequences of 48 taxa of bifidobacteria offers new perspectives for their classification, especially to set up limit between two species. Indeed, several species are presenting a high homology and should be reclassified. On the other hand, some subspecies are presenting a low homology and should therefore be reclassified into different species. In addition, a better knowledge of the genome of bifidobacteria allows a better understanding of the mechanisms involved in complex carbohydrate metabolism. The genome of some species of bifidobacteria from human but also from animal origin demonstrates high presence in genes involved in the metabolism of complex oligosaccharides. Those species should be further tested to confirm their potential to metabolize complex oligosaccharides in vitro and in vivo.

Clinical Applications of Bioactive Milk Components: A Review (우유 생리활성 물질의 임상적 적용)

  • Han, Rae Hee;Yoon, Sung Hee;Kim, Geun-Bae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.167-176
    • /
    • 2019
  • Milk contains essential nutrients and functional compounds, such as calcium, fat-soluble vitamins A, D, E, and K, carotenoids, bioactive peptides, and sphingolipids. The bioactive molecules from milk are not expensive and have an added advantage of being derived from food. Therefore, they are more stable and have a broader spectrum than that of other chemicals. Bioactive milk components are useful for treating non-digestive tract disorders, such as cancer, cognitive decline, and hypertension. However, the clinical application of certain breast milk ingredients is limited due to the lack of a large-scale production technology. Once the scaled-up production of lactoferrin became possible, clinical applications were devised and evaluated. Similarly, human alpha-lactalbumin made lethal to tumor cells (HAMLET) can be produced on a large scale as a recombinant protein in microorganisms or in transgenic cattle using suitable separation systems. HAMLET can be used to treat human skin papilloma and cancer. Studies on breast milk that explored the clinical applications of the bioactive components of breast milk have spurred the development of translational medicine and breast milk-derived therapeutics. Some breast-milk derived therapeutic agents are already available to clinicians. Many components of breast milk have shown efficacy in pre-clinical studies and have valid clinical evaluations.

The Role of Two Human Milk Oligosaccharides, 2'-Fucosyllactose and Lacto-N-Neotetraose, in Infant Nutrition

  • Hegar, Badriul;Wibowo, Yulianti;Basrowi, Ray Wagiu;Ranuh, Reza Gunadi;Sudarmo, Subianto Marto;Munasir, Zakiudin;Atthiyah, Alpha Fardah;Widodo, Ariani Dewi;Supriatmo, Supriatmo;Kadim, Muzal;Suryawan, Ahmad;Diana, Ninung Rose;Manoppo, Christy;Vandenplas, Yvan
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.22 no.4
    • /
    • pp.330-340
    • /
    • 2019
  • Human breast milk contains numerous biomolecules. Human milk oligosaccharides (HMOs) are the third most abundant component of breast milk, after lactose and lipids. Amongst the synthetized HMOs, 2'-fucosyllactose (2'-FL) and lacto-N-neotetraose (LNnT) are widely studied and are considered safe for infant nutrition. Several studies have reported the health benefits of HMOs, which include modulation of the intestinal microbiota, anti-adhesive effect against pathogens, modulation of the intestinal epithelial cell response, and development of the immune system. The amount and diversity of HMOs are determined by the genetic background of the mothers (HMO secretors or non-secretors). The non-secretor mothers secrete lower HMOs than secretor mothers. The breastfed infants of secretor mothers gain more health benefit than those of non-secretor mothers. In conclusion, supplementation of infant formula with 2'-FL and LNnT is a promising innovation for infant nutrition.

Expression and Functional Characterization of Recombinant Human Erythropoietin (rhEPO) Produced in the Milk of Transgenic Mice

  • 권득남;박종이;이소영;황규찬;양민정;김진회
    • Proceedings of the KSAR Conference
    • /
    • 2003.06a
    • /
    • pp.17-17
    • /
    • 2003
  • The milk of transgenic animals may provide an attractive vehicle for large-scale production of hEPO. Since glycosylation is cell type specific, recombinant human EPO (rhEPO) produced in different host cells contain different patterns of oligosaccharides, which could affect the biological functions. However, there have been no reports on the characteristics of rhEPO derived from milk of transgenic animals. To address this objective, several transgenic mice by using pWAPhEPO and/or pBC1hEPO expression vector were produced. However, 2 lines of pWAPhEPO founder female mouse died during late gestational day (day 18) before offspring could be obtained. They showed a severe splenomegaly, Unlike those of pWAPhEPO, mammary gland epithelial cells from biopsies of lactating pBC1hEPO transgenic mice had marked immunoreactivity to EPO and any activity was not detected in other tissues. The expression level of rhEPO is about 0.7% of mammary gland cellular total soluble proteins and an amount of 300~500 mg/L rhEPO is secreted into milk. Furthermore, the pBC1hEPO transgenic mice transmitted this character to their progeny in mendelian manner. In order to determine the extent of glycosylation variation, N-linked oligosaccharide structures present in the milk-derived rhEPO were characterized. Most of milk-derived rhEPO is fully glycosylated. the biological activity of milk-derived rhEPO was comparable to that of purified CHO-derived rhEPO, and milk-derived rhEPO showed relatively stable after freezing and thawing. Taken together, the results illustrate the potential of transgenic animals in the large-scale production of biopharmaceuticals.

  • PDF

Identification of Oligosaccharides in Human Milk Bound onto the Toxin A Carbohydrate Binding Site of Clostridium difficile

  • Nguyen, Thi Thanh Hanh;Kim, Jong Woon;Park, Jun-Seong;Hwang, Kyeong Hwan;Jang, Tae-Su;Kim, Chun-Hyung;Kim, Doman
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.4
    • /
    • pp.659-665
    • /
    • 2016
  • The oligosaccharides in human milk constitute a major innate immunological mechanism by which breastfed infants gain protection against infectious diarrhea. Clostridium difficile is the most important cause of nosocomial diarrhea, and the C-terminus of toxin A with its carbohydrate binding site, TcdA-f2, demonstrates specific abolishment of cytotoxicity and receptor binding activity upon diethylpyrocarbonate modification of the histidine residues in TcdA. TcdA-f2 was cloned and expressed in E. coli BL21 (DE3). A human milk oligosaccharide (HMO) mixture displayed binding with TcdA-f2 at 38.2 respond units (RU) at the concentration of 20 μg/ml, whereas the eight purified HMOs showed binding with the carbohydrate binding site of TcdA-f2 at 3.3 to 14 RU depending on their structures via a surface plasma resonance biosensor. Among them, Lacto-N-fucopentaose V (LNFPV) and Lacto-N-neohexaose (LNnH) demonstrated tight binding to TcdA-f2 with docking energy of −9.48 kcal/mol and −12.81 kcal/mol, respectively. It displayed numerous hydrogen bonding and hydrophobic interactions with amino acid residues of TcdA-f2.

The Human Milk Oligosaccharide 2'-Fucosyllactose Shows an Immune-Enhancing Effect in a Cyclophosphamide-Induced Mouse Model

  • Seon Ha Jo;Kyeong Jin Kim;Soo-yeon Park;Hyun-Dong Paik;Ji Yeon Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.3
    • /
    • pp.356-362
    • /
    • 2023
  • The 2'-fucosyllactose (2'-FL) is the richest components in a human milk oligosaccharide. Several studies have reported that 2'-FL has beneficial effects in infants. However, there are few studies on its immune-enhancing effects. This research aimed to examine the immune-enhancing effect of 2'-FL on immunosuppression by cyclophosphamide (CCP) in ICR mice. Mice were orally administered distilled water or 0.5 mg/kg B.W. 2'-FL for 14 days. An immunocompromised mouse model was induced using CCP 80 mg/kg B.W. at 12-14 days. Using the CCP had effects on reducing their body weight, organ weight, spleen index, natural killer (NK) cell activity, and cytokines concentration and expression. This study also used concanavalin A-mediated T-cell proliferation to verify the immune-enhancing effects in the sample. Body weight, spleen index, organ weight, and cytokine levels were measured to estimate the immune-enhancing effects. The body weight at 14 days tended to increase, and the spleen weight and index significantly increased in the 2'-FL group compared to the CCP group. The NK cell activity increased in the 2'-FL group compared to the CCP group, but there was no significant difference. The concentration of interleukin (IL)-2 tended to recover in the 2'-FL group compared to the CCP group. The 2'-FL group showed a significant increase of IL-10 and IFN-gamma concentration compared to the CCP group. In addition, there was a trend of increased IL-10 mRNA expression compared to the CCP group. These results revealed that 2'-FL improved CCP-induced immunosuppression, suggesting that 2'-FL may have the potential to enhance the immune system.

Human Milk Oligosaccharide Profiles and the Secretor and Lewis Gene Status of Indonesian Lactating Mothers

  • Verawati Sudarma;Diana Sunardi;Nanis Sacharina Marzuki;Zakiudin Munasir;Asmarinah;Adi Hidayat;Badriul Hegar
    • Pediatric Gastroenterology, Hepatology & Nutrition
    • /
    • v.26 no.5
    • /
    • pp.266-276
    • /
    • 2023
  • Purpose: Human milk oligosaccharides (HMOs) may be genetically determined based on the secretor and Lewis status of the mother. This study aims to determine the HMO profile and the secretor and Lewis gene status of Indonesian lactating mothers. Methods: Baseline data of 120 mother-infant pairs between 0-4 months post-partum obtained from a prospective longitudinal study was used. The concentrations of 2'-fucosyllactose (2'FL), lacto-N-fucopentaose I (LNFP I), lacto-N-tetraose (LNT), lacto-N-neotetraose (LNnT), 3'-sialyllactose (3'SL), and 6'-sialyllactose (6'SL) were measured. Genetic analysis was performed for mothers using targeted next-generation sequencing and Sanger sequencing. Wild-type AA with the rs1047781 (A385T) polymorphism was categorized as secretor positive, while heterozygous mutant AT was classified as a weak secretor. The presence of rs28362459 (T59G) heterozygous mutant AC and rs3745635 (G508A) heterozygous mutant CT genes indicated a Lewis negative status, and the absence of these genes indicated a positive status. Subsequently, breast milk was classified into various groups, namely Group 1: Secretor+Lewis+ (Se+Le+), Group 2: Secretor-Lewis+ (Se-Le+), Group 3: Secretor+Lewis-(Se+Le-), and Group 4: Secretor-Lewis- (Se-Le-). Data were analyzed using the Mann-Whitney and Kruskal-Wallis rank tests, and a p-value of 0.05 indicated statistical significance. Results: A total of 58.3% and 41.7% of the samples had positive and weak secretor statuses, respectively. The proportion of those in Group 1 was 85%, while 15% were Group 3. The results showed that only 2'FL significantly differed according to the secretor status (p-value=0.018). Conclusion: All Indonesian lactating mothers in this study were secretor positive, and most of them had a Lewis-positive status.

Major Components of Caprine Milk and Its Significance for Human Nutrition (산양유의 조성과 그 식품영양학적 의의)

  • Kim, Hyo-Hee;Park, Young-Seo;Yoon, Sung-Sik
    • Korean Journal of Food Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.121-126
    • /
    • 2014
  • Recently, infant formula products made of caprine milk have gained popularity, mainly because the nutritional composition of caprine milk is similar to that of human milk. In addition, caprine milk is considered to be better than bovine milk in terms of nutrient composition and easier digestion. Compared to bovine milk, caprine milk contains more ${\beta}$-casein, but less ${\alpha}$S1-casein. While the lactose concentration of both bovine and caprine milk is almost the same, a content of total oligosaccharides in caprine milk was approximately five to eight times higher than that in bovine milk. However, as the dairy goat industry in Korea is in a nascent stage of milk production and further processing, many nutritional advantages of caprine milk over bovine milk are not fully conveyed to general consumers. It is recommended that scientific research regarding the nutritional benefits of caprine milk needs to be conducted urgently, owing to the increasing domestic sales of infant formula products made of caprine milk.