Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.8.168

Human milk oligosaccharides: the novel modulator of intestinal microbiota  

Jeong, Kyung-Hun (Department of Food Nutrition, Chungnam National University)
Nguyen, Vi (Department of Pharmacology and Toxicology, University of California)
Kim, Jae-Han (Department of Food Nutrition, Chungnam National University)
Publication Information
BMB Reports / v.45, no.8, 2012 , pp. 433-441 More about this Journal
Abstract
Human milk, which nourishes the early infants, is a source of bioactive components for the infant growth, development and commensal formulation as well. Human milk oligosaccharide is a group of complex and diverse glycans that is apparently not absorbed in human gastrointestinal tract. Although most mammalian milk contains oligosaccharides, oligosaccharides in human milk exhibit unique features in terms of their types, amounts, sizes, and functionalities. In addition to the prevention of infectious bacteria and the development of early immune system, human milk oligosaccharides are able to facilitate the healthy intestinal microbiota. Bifidobacterial intestinal microbiota appears to be established by the unilateral interaction between milk oligosaccharides, human intestinal activity and commensals. Digestibility, membrane transportation and catabolic activity by bacteria and intestinal epithelial cells, all of which are linked to the structural of human milk oligosaccharides, are crucial in determining intestinal microbiota.
Keywords
Bifidobacterium; Fucose; Human milk oligosaccharide; Intestinal microbiota; N-acetylglucosamine; N-acetylneuraminic acid; Prebiotics; Sialic acid;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Sela, D. A., Chapman, J., Adeuya, A., Kim, J. H., Chen, F., Whitehead, T. R., Lapidus, A., Rokhsar, D. S., Lebrilla, C. B., German, J. B., Price, N. P., Richardson, P. M. and Mills, D. A. (2008) The genome sequence of Bifidobacterium longum subsp infantis reveals adaptations for milk utilization within the infant microbiome. Proc. Natl. Acad. Sci. U.S.A. 105, 18964-18969.   DOI   ScienceOn
2 Sumiyoshi, W., Urashima, T., Nakamura, T., Arai, I., Saito, T., Tsumura, N., Wang, B., Brand-Miller, J., Watanabe, Y. and Kimura, K. (2003) Determination of each neutral oligosaccharide in the milk of Japanese women during the course of lactation. Brit. J. Nutr. 89, 61-69.   DOI   ScienceOn
3 Ninonuevo, M. R., Perkins, P. D., Francis, J., Lamotte, L. A., LoCascio, R. G., Freeman, S. L., Mills, D. A., German, J. B., Grimm, R. and Lebrilla, C. B. (2008) Daily variations in oligosaccharides of human milk determined by microfluidic chips and mass spectrometry. J. Agr. Food Chem. 56, 618-626.   DOI   ScienceOn
4 Tao, N., Depeters, E. J., Freeman, S., German, J. B., Grimm, R. and Lebrilla, C. B. (2008) Bovine milk glycome. J. Dairy. Sci. 91, 3768-3778.   DOI   ScienceOn
5 Tao, N., Ochonicky, K. L., German, J. B., Donovan, S. M. and Lebrilla, C. B. (2010) Structural determination and daily variations of porcine milk oligosaccharides. J. Agr. Food Chem. 58, 4653-4659.   DOI   ScienceOn
6 Martinez-Ferez, A., Rudloff, S., Guadix, A., Henkel, C. A., Pohlentz, G., Boza, J. J., Guadix, E. M. and Kunz, C. (2006) Goats' milk as a natural source of lactose-derived oligosaccharides: Isolation by membrane technology. Int. Dairy J. 16, 173-181.   DOI   ScienceOn
7 Nakamura, T. and Urashima, T. (2004) The milk oligosaccharides of domestic farm animals. Trends. Glycosci. Glyc. 16, 135-142.   DOI   ScienceOn
8 Urashima, T., Kawai, Y., Nakamura, T., Arai, I., Saito, T., Namiki, M., Yamaoka, K., Kawahawa, K. and Messer, M. (1999) Chemical characterisation of six oligosaccharides in a sample of colostrum of the brown capuchin, Cebus apella (Cebidae : Primates). Comp. Biochem. Phys. C. 124, 295-300.   DOI   ScienceOn
9 Taufik, E., Fukuda, K., Senda, A., Saito, T., Williams, C., Tilden, C., Eisert, R., Oftedal, O. and Urashima, T. (2012) Structural characterization of neutral and acidic oligosaccharides in the milks of strepsirrhine primates: greater galago, aye-aye, Coquerel's sifaka and mongoose lemur. Glycoconjugate J. 29, 119-134.   DOI   ScienceOn
10 Kiyohara, M., Nakatomi, T., Kurihara, S., Fushinobu, S., Suzuki, H., Tanaka, T., Shoda, S., Kitaoka, M., Katayama, T., Yamamoto, K. and Ashida, H. (2012) alpha-N-Acetylgalactosaminidase from infant-associated bifidobacteria belonging to novel glycoside hydrolase family 129 is implicated in alternative mucin degradation pathway. J. Biol. Chem. 287, 693-700.   DOI
11 Wada, J., Ando, T., Kiyohara, M., Ashida, H., Kitaoka, M., Yamaguchi, M., Kumagai, H., Katayama, T. and Yamamoto, K. (2008) Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Appl. Environ. Microb. 74, 3996-4004.   DOI   ScienceOn
12 Marcobal, A., Barboza, M., Sonnenburg, E. D., Pudlo, N., Martens, E. C., Desai, P., Lebrilla, C. B., Weimer, B. C., Mills, D. A., German, J. B. and Sonnenburg, J. L. (2011) Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host. Microbe. 10, 507-514.   DOI   ScienceOn
13 Garrido, D., Kim, J. H., German, J. B., Raybould, H. E. and Mills, D. A. (2011) Oligosaccharide binding poteins from Bifidobacterium longum subsp infantis reveal a preference for host glycans. PLoS ONE 6, e17315.   DOI   ScienceOn
14 Vimr, E. R., Kalivoda, K. A., Deszo, E. L. and Steenbergen, S. M. (2004) Diversity of microbial sialic acid metabolism. Microbiol. Mol. Biol. R 68, 132-153.
15 Bhattacharya, D., Nagpure, A. and Gupta, R. K. (2007) Bacterial chitinases: Properties and potential. Crit. Rev. Biotechnol. 27, 21-28.   DOI   ScienceOn
16 Homer, K. A., Patel, R. and Beighton, D. (1993) Effects of N-Acetylglucosamine on Carbohydrate Fermentation by Streptococcus-Mutans Nctc-10449 and Streptococcus- Sobrinus Sl-1. Infect. Immun. 61, 295-302.
17 Li, Y. H. and Chen, X. (2012) Sialic acid metabolism and sialyltransferases: natural functions and applications. Appl. Microbiol. Biot. 94, 887-905.   DOI
18 Reuter, G. and Gabius, H. J. (1996) Sialic acids structure - analysis - metabolism - occurrence - recognition. Biol. Chem. H-S. 377, 325-342.
19 Sela, D. A., Garrido, D., Lerno, L., Wu, S. A., Tan, K. M., Eom, H. J., Joachimiak, A., Lebrilla, C. B. and Mills, D. A. (2012) Bifidobacterium longum subsp infantis ATCC 15697 alpha-fucosidases are active on fucosylated human milk oligosaccharides. Appl. Environ. Microb. 78, 795-803.   DOI
20 Amutha, B., Khire, J. M. and Khan, M. I. (1999) Active site characterization of the exo-N-acetyl-beta-D-glucosaminidase from thermotolerant Bacillus sp NCIM 5120: involvement of tryptophan, histidine and carboxylate residues in catalytic activity. Bba-Gen Subjects 1427, 121-132.   DOI   ScienceOn
21 Clarke, V. A., Platt, N. and Butters, T. D. (1995) Cloning and expression of the beta-N-acetylglucosaminidase gene from Streptococcus pneumoniae - generation of truncated enzymes with modified aglycon specificity. J. Biol. Chem. 270, 8805-8814.   DOI   ScienceOn
22 Alice, A. F., Perez-Martinez, G. and Sanchez-Rivas, C. (2003) Phosphoenolpyruvate phosphotransferase system and N-acetylglucosamine metabolism in Bacillus sphaericus. Microbiol-Sgm 149, 1687-1698.   DOI   ScienceOn
23 Kunz, C., Rudloff, S., Hintelmann, A., Pohlentz, G. and Egge, H. (1996) High-pH anion-exchange chromatography with pulsed amperometric detection and molar response factors of human milk oligosaccharides. J. Chromatogr. B. 685, 211-221.   DOI   ScienceOn
24 Fabich, A. J., Jones, S. A., Chowdhury, F. Z., Cernosek, A., Anderson, A., Smalley, D., McHargue, J. W., Hightower, G. A., Smith, J. T., Autieri, S. M., Leatham, M. P., Lins, J. J., Allen, R. L., Laux, D. C., Cohen, P. S. and Conway, T. (2008) Comparison of carbon nutrition for pathogenic and commensal Escherichia coli strains in the mouse intestine. Infect. Immun. 76, 1143-1152.   DOI   ScienceOn
25 Degnan, B. A. and Macfarlane, G. T. (1995) Carbohydrate utilization patterns and substrate preferences in Bacteroides thetaiotaomicron. Anaerobe 1, 25-33.   DOI   ScienceOn
26 Leongmorgenthaler, P., Zwahlen, M. C. and Hottinger, H. (1991) Lactose metabolism in Lactobacillus bulgaricusanalysis of the primary structure and expression of the genes involved. J. Bacteriol. 173, 1951-1957.   DOI
27 Hunt, D. E., Gevers, D., Vahora, N. M. and Polz, M. F. (2008) Conservation of the chitin utilization pathway in the Vibrionaceae. Appl. Environ. Microb. 74, 44-51.   DOI   ScienceOn
28 Yamada-Okabe, T., Sakamori, Y., Mio, T. and Yamada- Okabe, H. (2001) Identification and characterization of the genes for N-acetylglucosaminekinase and N-acetylglucosamine- phosphate deacetylase in the pathogenic fungus Candida albicans. Eur. J. Biochem. 268, 2498-2505.   DOI   ScienceOn
29 Lauret, R., MorelDeville, F., Berthier, F., Champomier- Verges, M., Postma, P., Ehrlich, S. D. and Zagorec, M. (1996) Carbohydrate utilization in Lactobacillus sake. Appl. Environ. Microb. 62, 1922-1927.
30 Peter, M. G. (1995) Applications and environmental aspects of chitin and chitosan. J. Macromol. Sci. Pure. A32, 629-640.   DOI
31 Tao, N. A., Wu, S. A., Kim, J., An, H. J., Hinde, K., Power, M. L., Gagneux, P., German, J. B. and Lebrilla, C. B. (2011) Evolutionary glycomics: characterization of milk oligosaccharides in primates. J. Proteome. Res. 10, 1548-1557.   DOI   ScienceOn
32 Finke, B., Mank, M., Daniel, H. and Stahl, B. (2000) Offline coupling of low-pressure anion-exchange chromatography with MALDI-MS to determine the elution order of human milk oligosaccharides. Anal. Biochem. 284, 256-265.   DOI   ScienceOn
33 Ninonuevo, M. R., Ward, R. E., LoCascio, R. G., German, J. B., Freeman, S. L., Barboza, M., Mills, D. A. and Lebrilla, C. B. (2007) Methods for the quantitation of human milk oligosaccharides in bacterial fermentation by mass spectrometry. Anal. Biochem. 361, 15-23.   DOI   ScienceOn
34 Wu, S. A., Tao, N. N., German, J. B., Grimm, R. and Lebrilla, C. B. (2010) Development of an annotated library of neutral human milk oligosaccharides. J. Proteome. Res. 9, 4138-4151.   DOI   ScienceOn
35 Wu, S. A., Grimm, R., German, J. B. and Lebrilla, C. B. (2011) Annotation and structural analysis of sialylated human milk oligosaccharides. J. Proteome. Res. 10, 856-868.   DOI   ScienceOn
36 Coppa, G. V., Gabrielli, O., Pierani, P., Catassi, C., Carlucci, A. and Giorgi, P. L. (1993) Changes in carbohydrate composition in human milk over 4 months of lactation. Pediatrics 91, 637-641.
37 Chaturvedi, P., Warren, C. D., Altaye, M., Morrow, A. L., Ruiz-Palacios, G., Pickering, L. K. and Newburg, D. S. (2001) Fucosylated human milk oligosaccharides vary between individuals and over the course of lactation. Glycobiology 11, 365-372.   DOI   ScienceOn
38 Sela, D. A., Li, Y. H., Lerno, L., Wu, S. A., Marcobal, A. M., German, J. B., Chen, X., Lebrilla, C. B. and Mills, D. A. (2011) An Infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides. J. Biol. Chem. 286, 11909-11918.   DOI   ScienceOn
39 Bode, L. (2009) Human milk oligosaccharides: prebiotics and beyond. Nutr. Rev. 67(Suppl 2), S183-191.   DOI   ScienceOn
40 Homer, K. A., Patel, R. and Beighton, D. (1993) Effects of N-acetylglucosamine on carbohydrate fermentation by Streptococcus mutans NCTC10449 and Streptococcus sobrinus SL-1. Infect. Immun. 61, 295-302.
41 Chichlowski, M., German, J. B., Lebrilla, C. B. and Mills, D. A. (2011) The influence of milk oligosaccharides on microbiota of infants: opportunities for formulas. Annu. Rev. Food Sci. Tech. 2, 331-351.   DOI   ScienceOn
42 LoCascio, R. G., Niñonuevo, M. R., Kronewitter, S. R., Freeman, S. L., German, J. B., Lebrilla, C. B. and Mills, D. A. (2009) A versatile and scalable strategy for glycoprofiling bifidobacterial consumption of human milk oligosaccharides. Microb. Biotechnol. 2, 333-342.   DOI   ScienceOn
43 Asakuma, S., Hatakeyama, E., Urashima, T., Yoshida, E., Katayama, T., Yamamoto, K., Kumagai, H., Ashida, H., Hirose, J. and Kitaoka, M. (2011) Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J. Biol. Chem. 286, 34583-34592.   DOI   ScienceOn
44 Marcobal, A. and Sonnenburg, J. L. (2012) Human milk oligosaccharide consumption by intestinal microbiota. Clin. Microbiol. Infec. 18, 12-15.   DOI   ScienceOn
45 Turroni, F., Bottacini, F., Foroni, E., Mulder, I., Kim, J. H., Zomer, A., Sanchez, B., Bidossi, A., Ferrarini, A., Giubellini, V., Delledonne, M., Henrissat, B., Coutinho, P., Oggioni, M., Fitzgerald, G. F., Mills, D., Margolles, A., Kelly, D., van Sinderen, D. and Ventura, M. (2010) Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc. Natl. Acad. Sci. U.S.A. 107, 19514-19519.   DOI   ScienceOn
46 Gnoth, M. J., Rudloff, S., Kunz, C. and Kinne, R. K. H. (2002) Studies on the intestinal transport of human milk oligosaccharides (HMO) using Caco-2 cells. Food Res. Int. 35, 145-149.   DOI   ScienceOn
47 Ward, R. E., Ninonuevo, M., Mills, D. A., Lebrilla, C. B. and German, J. B. (2007) In vitro fermentability of human milk oligosaccharides by several strains of bifidobacteria. Mol. Nutr. Food Res. 51, 1398-1405.   DOI   ScienceOn
48 Groschwitz, K. R., Ahrens, R., Osterfeld, H., Gurish, M. F., Han, X., Abrink, M., Finkelman, F. D., Pejler, G. and Hogan, S. P. (2009) Mast cells regulate homeostatic intestinal epithelial migration and barrier function by a chymase/ Mcpt4-dependent mechanism. Proc. Natl. Acad. Sci. U.S.A. 106, 22381-22386.   DOI   ScienceOn
49 Sela, D. A. and Mills, D. A. (2010) Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends. Microbiol. 18, 298-307.   DOI   ScienceOn
50 Gnoth, M. J., Kunz, C., Kinne-Saffran, E. and Rudloff, S. (2000) Human milk oligosaccharides are minimally digested in vitro. J. Nutr. 130, 3014-3020.   DOI
51 Engfer, M. B., Stahl, B., Finke, B., Sawatzki, G. and Daniel, H. (2000) Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am. J. Clin. Nutr. 71, 1589-1596.
52 Obermeier, S., Rudloff, S., Pohlentz, G., Lentze, M. J. and Kunz, C. (1999) Secretion of C-13-labelled oligosaccharides into human milk and infant's urine after an oral [C-13]galactose load. Isot. Environ. Healt. S. 35, 119-125.   DOI   ScienceOn
53 Bode, L., Kunz, C., Muhly-Reinholz, M., Mayer, K., Seeger, W. and Rudloff, S. (2004) Inhibition of monocyte, lymphocyte, and neutrophil adhesion to endothelial cells by human milk oligosaccharides. Thromb. Haemost. 92, 1402-1410.
54 Lasky, L. A. (1995) Selectin-carbohydrate interactions and the initiation of the inflammatory response. Annu. Rev. Biochem. 64, 113-139.   DOI   ScienceOn
55 Schumacher, G., Bendas, G., Stahl, B. and Beermann, C. (2006) Human milk oligosaccharides affect P-selectin binding capacities: In vitro investigation. Nutrition 22, 620-627.   DOI   ScienceOn
56 Vos, A. P., M'Rabet, L., Stahl, B., Boehm, G. and Garssen, J. (2007) Immune-modulatory effects and potential working mechanisms of orally applied nondigestible carbohydrates. Crit. Rev. Immunol. 27, 97-140.   DOI
57 Bode, L., Rudloff, S., Kunz, C., Strobel, S. and Klein, N. (2004) Human milk oligosaccharides reduce platelet-neutrophil complex formation leading to a decrease in neutrophil beta 2 integrin expression. J. Leukoc. Biol. 76, 820-826.   DOI   ScienceOn
58 McEver, R. P. (1994) Role of selectins in leukocyte adhesion to platelets and endothelium. Ann. NY. Acad. Sci. 714, 185-189.   DOI   ScienceOn
59 Moro, E. (1900) Morphologische und bakteriologische untersuchungen über die Darmbakterien des Sauglings : Die Bakterien-flora des normalen Frauenmilchstuhls. Jahrbuch. Kinderh. 61, 686-734.
60 LoCascio, R. G., Ninonuevo, M. R., Kronewitter, S. R., Freeman, S. L., German, J. B., Lebrilla, C. B. and Mills, D. A. (2009) A versatile and scalable strategy for glycoprofiling bifidobacterial consumption of human milk oligosaccharides. Microb. Biotechnol. 2, 333-342.   DOI   ScienceOn
61 Marcobal, A., Barboza, M., Froehlich, J. W., Block, D. E., German, J. B., Lebrilla, C. B. and Mills, D. A. (2010) Consumption of human milk oligosaccharides by gut-related microbes. J. Agr. Food Chem. 58, 5334-5340.   DOI   ScienceOn
62 Ruiz-Palacios, G. M., Cervantes, L. E., Ramos, P., Chavez- Munguia, B. and Newburg, D. S. (2003) Campylobacter jejuni binds intestinal H(O) antigen (Fuc alpha 1, 2Gal beta 1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J. Biol. Chem. 278, 14112-14120.   DOI   ScienceOn
63 Kunz, C. and Rudloff, S. (2008) Potential anti-inflammatory and anti-infectious effects of human milk oligosaccharides. Adv. Exp. Med. Biol. 606, 455-465.   DOI
64 Martín-Sosa, S., Martín, M.-J. and Hueso, P. (2002) The sialylated fraction of milk oligosaccharides is partially responsible for binding to enterotoxigenic and uropathogenic Escherichia coli human strains. J. Nutr. 132, 3067-3072.   DOI
65 Newburg, D. S. (1999) Human milk glycoconjugates that inhibit pathogens. Curr. Med. Chem. 6, 117-127.
66 Zivkovic, A. M., German, J. B., Lebrilla, C. B. and Mills, D. A. (2011) Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc. Natl. Acad. Sci. U.S.A. 108, 4653-4658.   DOI   ScienceOn
67 Charlwood, J., Tolson, D., Dwek, M. and Camilleri, P. (1999) A detailed analysis of neutral and acidic carbohydrates in human milk. Anal. Biochem. 273, 261-277.   DOI   ScienceOn
68 Nakhla, T., Fu, D. T., Zopf, D., Brodsky, N. L. and Hurt, H. (1999) Neutral oligosaccharide content of preterm human milk. Brit. J. Nutr. 82, 361-367.   DOI
69 Kunz, C., Rudloff, S., Baier, W., Klein, N. and Strobel, S. (2000) Oligosaccharides in human milk: Structural, functional, and metabolic aspects. Annu. Rev. Nutr. 20, 699-722.   DOI   ScienceOn
70 Hong, P., Ninonuevo, M. R., Lee, B., Lebrilla, C. and Bode, L. (2009) Human milk oligosaccharides reduce HIV-1-gp120 binding to dendritic cell-specific ICAM3- grabbing non-integrin (DC-SIGN). Br. J. Nutr. 101, 482-486.
71 Ninonuevo, M. R., Park, Y., Yin, H. F., Zhang, J. H., Ward, R. E., Clowers, B. H., German, J. B., Freeman, S. L., Killeen, K., Grimm, R. and Lebrilla, C. B. (2006) A strategy for annotating the human milk glycome. J. Agr. Food Chem. 54, 7471-7480.   DOI
72 Yolken, R. H., Peterson, J. A., Vonderfecht, S. L., Fouts, E. T., Midthun, K. and Newburg, D. S. (1992) Human milk mucin inhibits rotavirus replication and prevents experimental gastroenteritis. J. Clin. Invest. 90, 1984-1991.   DOI
73 Carlson, S. E. (1985) N-acetylneuraminic acid concentrations in human milk oligosaccharides and glycoproteins during lactation. Am. J. Clin. Nutr. 41, 720-726.   DOI
74 Chaturvedi, P., Warren, C. D., RuizPalacios, G. M., Pickering, L. K. and Newburg, D. S. (1997) Milk oligosaccharide profiles by reversed-phase HPLC of their perbenzoylated derivatives. Anal. Biochem. 251, 89-97.   DOI   ScienceOn
75 Ward, R. E., Ninonuevo, M., Mills, D. A., Lebrilla, C. B. and German, J. B. (2006) In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri. Appl. Environ. Microbiol. 72, 4497-4499.   DOI   ScienceOn
76 LoCascio, R. G., Ninonuevo, M. R., Freeman, S. L., Sela, D. A., Grimm, R., Lebrilla, C. B., Mills, D. A. and German, J. B. (2007) Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation. J. Agr. Food Chem. 55, 8914-8919.   DOI
77 Coppa, G. V., Gabrielli, O., Pierani, P., Catassi, C., Carlucci, A. and Giorgi, P. L. (1993) Changes in carbohydrate- composition in human milk over 4 months of lactation. Pediatrics 91, 637-641.
78 Kuntz, S., Rudloff, S. and Kunz, C. (2008) Oligosaccharides from human milk influence growth-related characteristics of intestinally transformed and non-transformed intestinal cells. Br. J. Nutr. 99, 462-471.
79 Yatsunenko, T., Rey, F. E., Manary, M. J., Trehan, I., Dominguez-Bello, M. G., Contreras, M., Magris, M., Hidalgo, G., Baldassano, R. N., Anokhin, A. P., Heath, A. C., Warner, B., Reeder, J., Kuczynski, J., Caporaso, J. G., Lozupone, C. A., Lauber, C., Clemente, J. C., Knights, D., Knight, R. and Gordon, J. I. (2012) Human gut microbiome viewed across age and geography. Nature 486, 222-227.
80 Boehm, G. and Moro, G. (2008) Structural and functional aspects of prebiotics used in infant nutrition. J. Nutr. 138, 1818S-1828S.   DOI
81 Mahowald, M. A., Rey, F. E., Seedorf, H., Turnbaugh, P. J., Fulton, R. S., Wollam, A., Shah, N., Wang, C. Y., Magrini, V., Wilson, R. K., Cantarel, B. L., Coutinho, P. M., Henrissat, B., Crock, L. W., Russell, A., Verberkmoes, N. C., Hettich, R. L. and Gordon, J. I. (2009) Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc. Natl. Acad. Sci. U.S.A. 106, 5859-5864.   DOI   ScienceOn
82 Huttenhower, C., Gevers, D., Knight, R., Abubucker, S., Badger, J. H., Chinwalla, A. T., Creasy, H. H., Earl, A. M., FitzGerald, M. G., Fulton, R. S., Giglio, M. G., Hallsworth-Pepin, K., Lobos, E. A., Madupu, R., Magrini, V., Martin, J. C., Mitreva, M., Muzny, D. M., Sodergren, E. J., Versalovic, J., Wollam, A. M., Worley, K. C., Wortman, J. R., Young, S. K., Zeng, Q. D., Aagaard, K. M., Abolude, O. O., Allen-Vercoe, E., Alm, E. J., Alvarado, L., Andersen, G. L., Anderson, S., Appelbaum, E., Arachchi, H. M., Armitage, G., Arze, C. A., Ayvaz, T., Baker, C. C., Begg, L., Belachew, T., Bhonagiri, V., Bihan, M., Blaser, M. J., Bloom, T., Bonazzi, V., Brooks, J. P., Buck, G. A., Buhay, C. J., Busam, D. A., Campbell, J. L., Canon, S. R., Cantarel, B. L., Chain, P. S. G., Chen, I. M. A., Chen, L., Chhibba, S., Chu, K., Ciulla, D. M., Clemente, J. C., Clifton, S. W., Conlan, S., Crabtree, J., Cutting, M. A., Davidovics, N. J., Davis, C. C., DeSantis, T. Z., Deal, C., Delehaunty, K. D., Dewhirst, F. E., Deych, E., Ding, Y., Dooling, D. J., Dugan, S. P., Dunne, W. M., Durkin, A. S., Edgar, R. C., Erlich, R. L., Farmer, C. N., Farrell, R. M., Faust, K., Feldgarden, M., Felix, V. M., Fisher, S., Fodor, A. A., Forney, L. J., Foster, L., Di Francesco, V., Friedman, J., Friedrich, D. C., Fronick, C. C., Fulton, L. L., Gao, H. Y., Garcia, N., Giannoukos, G., Giblin, C., Giovanni, M. Y., Goldberg, J. M., Goll, J., Gonzalez, A., Griggs, A., Gujja, S., Haake, S. K., Haas, B. J., Hamilton, H. A., Harris, E. L., Hepburn, T. A., Herter, B., Hoffmann, D. E., Holder, M. E., Howarth, C., Huang, K. H., Huse, S. M., Izard, J., Jansson, J. K., Jiang, H. Y., Jordan, C., Joshi, V., Katancik, J. A., Keitel, W. A., Kelley, S. T., Kells, C., King, N. B., Knights, D., Kong, H. D. H., Koren, O., Koren, S., Kota, K. C., Kovar, C. L., Kyrpides, N. C., La Rosa, P. S., Lee, S. L., Lemon, K. P., Lennon, N., Lewis, C. M., Lewis, L., Ley, R. E., Li, K., Liolios, K., Liu, B., Liu, Y., Lo, C. C., Lozupone, C. A., Lunsford, R. D., Madden, T., Mahurkar, A. A., Mannon, P. J., Mardis, E. R., Markowitz, V. M., Mavromatis, K., McCorrison, J. M., McDonald, D., McEwen, J., McGuire, A. L., McInnes, P., Mehta, T., Mihindukulasuriya, K. A., Miller, J. R., Minx, P. J., Newsham, I., Nusbaum, C., O'Laughlin, M., Orvis, J., Pagani, I., Palaniappan, K., Patel, S. M., Pearson, M., Peterson, J., Podar, M., Pohl, C., Pollard, K. S., Pop, M., Priest, M. E., Proctor, L. M., Qin, X., Raes, J., Ravel, J., Reid, J. G., Rho, M., Rhodes, R., Riehle, K. P., Rivera, M. C., Rodriguez-Mueller, B., Rogers, Y. H., Ross, M. C., Russ, C., Sanka, R. K., Sankar, P., Sathirapongsasuti, J. F., Schloss, J. A., Schloss, P. D., Schmidt, T. M., Scholz, M., Schriml, L., Schubert, A. M., Segata, N., Segre, J. A., Shannon, W. D., Sharp, R. R., Sharpton, T. J., Shenoy, N., Sheth, N. U., Simone, G. A., Singh, I., Smillie, C. S., Sobel, J. D., Sommer, D. D., Spicer, P., Sutton, G. G., Sykes, S. M., Tabbaa, D. G., Thiagarajan, M., Tomlinson, C. M., Torralba, M., Treangen, T. J., Truty, R. M., Vishnivetskaya, T. A., Walker, J., Wang, L., Wang, Z. Y., Ward, D. V., Warren, W., Watson, M. A., Wellington, C., Wetterstrand, K. A., White, J. R., Wilczek-Boney, K., Wu, Y. Q., Wylie, K. M., Wylie, T., Yandava, C., Ye, L., Ye, Y. Z., Yooseph, S., Youmans, B. P., Zhang, L., Zhou, Y. J., Zhu, Y. M., Zoloth, L., Zucker, J. D., Birren, B. W., Gibbs, R. A., Highlander, S. K., Methe, B. A., Nelson, K. E., Petrosino, J. F., Weinstock, G. M., Wilson, R. K., White, O. and Consortiu, H. M. P. (2012) Structure, function and diversity of the healthy human microbiome. Nature 486, 207-214.   DOI   ScienceOn
83 Muegge, B. D., Kuczynski, J., Knights, D., Clemente, J. C., Gonzalez, A., Fontana, L., Henrissat, B., Knight, R. and Gordon, J. I. (2011) Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science 332, 970-974.   DOI   ScienceOn
84 Wu, T. C. and Chen, P. H. (2009) Health consequences of nutrition in childhood and early infancy. Pediatr. Neonatol. 50, 135-142.   DOI   ScienceOn
85 Schack-Nielsen, L. and Michaelsen, K. E. (2007) Advances in our understanding of the biology of human milk and its effects on the offspring. J. Nutr. 137, 503-510.   DOI
86 Newburg, D. S. (2005) Innate immunity and human milk. J. Nutr. 135, 1308-1312.
87 Newburg, D. S. (2009) Neonatal protection by an innate immune system of human milk consisting of oligosaccharides and glycans. J. Anim. Sci. 87, 26-34.   DOI
88 Methe, B. A., Nelson, K. E., Pop, M., Creasy, H. H., Giglio, M. G., Huttenhower, C., Gevers, D., Petrosino, J. F., Abubucker, S., Badger, J. H., Chinwalla, A. T., Earl, A. M., FitzGerald, M. G., Fulton, R. S., Hallsworth-Pepin, K., Lobos, E. A., Madupu, R., Magrini, V., Martin, J. C., Mitreva, M., Muzny, D. M., Sodergren, E. J., Versalovic, J., Wollam, A. M., Worley, K. C., Wortman, J. R., Young, S. K., Zeng, Q., Aagaard, K. M., Abolude, O. O., Allen-Vercoe, E., Alm, E. J., Alvarado, L., Andersen, G. L., Anderson, S., Appelbaum, E., Arachchi, H. M., Armitage, G., Arze, C. A., Ayvaz, T., Baker, C. C., Begg, L., Belachew, T., Bhonagiri, V., Bihan, M., Blaser, M. J., Bloom, T., Bonazzi, V. R., Brooks, P., Buck, G., Buhay, C. J., Busam, D. A., Campbell, J. L., Canon, S. R., Cantarel, B. L., Chain, P. S., Chen, I. M. A., Chen, L., Chhibba, S., Chu, K., Ciulla, D. M., Clemente, J. C., Clifton, S. W., Conlan, S., Crabtree, J., Cutting, M. A., Davidovics, N. J., Davis, C. C., DeSantis, T. Z., Deal, C., Delehaunty, K. D., Dewhisrst, F. E., Deych, E., Ding, Y., Dooling, D. J., Dugan, S. P., Dunne, W. M., Durkin, A. S., Edgar, R. C., Erlich, R. L., Farmer, C. N., Farrell, R. M., Faust, K., Feldgarden, M., Felix, V. M., Fisher, S., Fodor, A. A., Forney, L., Foster, L., Di Francesco, V., Friedman, J., Friedrich, D. C., Fronick, C. C., Fulton, L. L., Gao, H., Garcia, N., Giannoukos, G., Giblin, C., Giovanni, M. Y., Goldberg, J. M., Goll, J., Gonzalez, A., Griggs, A., Gujja, S., Haas, B. J., Hamilton, H. A., Harris, E. L., Hepburn, T. A., Herter, B., Hoffmann, D. E., Holder, M. E., Howarth, C., Huang, K. H., Huse, S. M., Izard, J., Jansson, J. K., Jiang, H. Y., Jordan, C., Joshi, V., Katancik, J., Keitel, W., Kelley, S. T., Kells, C., Kinder-Haake, S., King, N. B., Knight, R., Knights, D., Kong, H. H., Koren, O., Koren, S., Kota, K. C., Kovar, C. L., Kyrpides, N. C., La Rosa, P. S., Lee, S. L., Lemon, K. P., Lennon, N., Lewis, C. M., Lewis, L., Ley, R. E., Li, K., Liolios, K., Liu, B., Liu, Y., Lo, C. C., Lozupone, C. A., Lunsford, R. D., Madden, T., Mahurkar, A. A., Mannon, P. J., Mardis, E. R., Markowitz, V. M., Mavrommatis, K., McCorrison, J. M., McDonald, D., McEwen, J., McGuire, A. L., McInnes, P., Mehta, T., Mihindukulasuriya, K. A., Miller, J. R., Minx, P. J., Newsham, I., Nusbaum, C., O'Laughlin, M., Orvis, J., Pagani, I., Palaniappan, K., Patel, S. M., Pearson, M., Peterson, J., Podar, M., Pohl, C., Pollard, K. S., Priest, M. E., Proctor, L. M., Qin, X., Raes, J., Ravel, J., Reid, J. G., Rho, M., Rhodes, R., Riehle, K. P., Rivera, M. C., Rodriguez-Mueller, B., Rogers, Y. H., Ross, M. C., Russ, C., Sanka, R. K., Sankar, P., Sathirapongsasuti, J. F., Schloss, J. A., Schloss, P. D., Schmidt, T. M., Scholz, M., Schriml, L., Schubert, A. M., Segata, N., Segre, J. A., Shannon, W. D., Sharp, R. R., Sharpton, T. J., Shenoy, N., Sheth, N. U., Simone, G. A., Singh, I., Smillie, C. S., Sobel, J. D., Sommer, D. D., Spicer, P., Sutton, G. G., Sykes, S. M., Tabbaa, D. G., Thiagarajan, M., Tomlinson, C. M., Torralba, M., Treangen, T. J., Truty, R. M., Vishnivetskaya, T. A., Walker, J., Wang, L., Wang, Z., Ward, D. V., Warren, W., Watson, M. A., Wellington, C., Wetterstrand, K. A., White, J. R., Wilczek-Boney, K., Wu, Y. Q., Wylie, K. M., Wylie, T., Yandava, C., Ye, L., Ye, Y., Yooseph, S., Youmans, B. P., Zhang, L., Zhou, Y. J., Zhu, Y. M., Zoloth, L., Zucker, J. D., Birren, B. W., Gibbs, R. A., Highlander, S. K., Weinstock, G. M., Wilson, R. K., White, O. and Consortiu, H. M. P. (2012) A framework for human microbiome research. Nature 486, 215-221.   DOI   ScienceOn
89 Morrow, A. L., Ruiz-Palacios, G. M., Jiang, X. and Newburg, D. S. (2005) Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J. Nutr. 135, 1304-1307.   DOI
90 Newburg, D. S., Ruiz-Palacios, G. M. and Morrow, A. L. (2005) Human milk glycans protect infants against enteric pathogens. Annu. Rev. Nutr. 25, 37-58.   DOI   ScienceOn
91 Gordon, J. I. (2012) Honor thy gut symbionts redux. Science 336, 1251-1253.   DOI   ScienceOn
92 Backhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A. and Gordon, J. I. (2005) Host-bacterial mutualism in the human intestine. Science 307, 1915-1920.   DOI   ScienceOn
93 Daniels, M. C. and Adair, L. S. (2005) Breast-feeding influences cognitive development in Filipino children. J. Nutr. 135, 2589-2595.   DOI
94 Harmsen, H. J., Wildeboer-Veloo, A. C., Raangs, G. C., Wagendorp, A. A., Klijn, N., Bindels, J. G. and Welling, G. W. (2000) Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J. Pediatr. Gastroenterol. Nutr. 30, 61-67.   DOI   ScienceOn
95 German, J. B., Dillard, C. J. and Ward, R. E. (2002) Bioactive components in milk. Curr. Opin. Clin. Nutr. 5, 653-658.   DOI